
Diverging Emerging Field of Multi-Task
Reinforcement Learning

Mudit Verma
Arizona State University
muditverma@asu.edu

ABSTRACT
Multi-Task Reinforcement Learning or MTRL is an emerging
field that is gaining tremendous attention from researches
since the use of Deep Reinforcement Learning. In this re-
port, we will motivate the need forMulti-Task Reinforcement
Learning & see howmodern researches are different in many
aspects. We will formalize the notion of a task in an attempt
to unify formal definitions of different works & provide many
domains that have been used in several notable ones. We will
answer some questions about the MTRL field, like knowl-
edge about the task to the agent, works using model-free
and model-based settings, online and offline model updates
& how reuse of experience has been adapted for MTRL. We
will then discuss three notable works that differ in approach
& the definition of the task and alongside visit some other
relevant literature in brief. We will cover Meta-Learning, Hi-
erarchical RL & Adoption of special normalization function
with a distributed RL setting as our representative selec-
tion of works to review. We will then highlight some of the
important challenges faced by MTRL algorithms like Task
Interference, Distraction Dilemma and Scalability & how
various works have addressed them. We will conclude our
report & note some possible future directions.

KEYWORDS
Multi-Task Reinforcement Learning, Markov Decision Pro-
cesses, Meta-Learning, Hierarchical Reinforcement Learning

1 INTRODUCTION
Reinforcement Learning has enjoyed a lot of success in recent
years, surpassing human limits in a variety of domains, espe-
cially strategy games like Chess and Go. However, humans
are still the better multi-task agents, performing hundreds of
tasks each day which may be as similar as achieving the same
goal again and again (like opening several doors in a day) or
completely different (like cooking & driving a car) or even
perform tasks which have conflicting goals (like opening a
door & closing it). Another area at which the humans are
better is sample efficiency. It is well known that humans can
learn manipulation tasks relatively easily than their robot
counterparts. These are some of the manymotivations recent
researches have used to contribute in the field of Multi-Task
Reinforcement Learning or MTRL.

[33] is an in-depth survey of Multi-Task Learning (& not
specific to RL). It does talk about howmulti-task learning can
behave or be improved when it is used with other paradigms,
like RL, which is our concern. It has a short section on MTRL
and lists out various works which we skip for brevity. [26]
is a more specific survey over the intersection of Multi-Task
RL and Transfer Learning and presents many ideas that are
still used but with a flavor of Deep Learning. However, this
survey does shed light on some of the important issues that
one can come across in MTRL, a prominent one being “nega-
tive transfer" or “task interference" in some other literature.
These and some other issues are discussed in 7.

Although [26] is an excellent resource for a variety of rea-
sons, it does not cover the MTRL works in the era of Deep
Learning. Since the beginning of the Deep Reinforcement
Learning, many previous works have been modified to work
with MTRL, whereas, many new methods have been devel-
oped too. Deep RL has been extensively used in the past years
for image-based environments for end-to-end agent learn-
ing, and hence, it becomes an interesting topic to study. The
goal of this report is to explore a variety of Deep Learning
(or gradient-based) based Reinforcement Learning methods
maximizing a Multi-Task objective from different lenses.
We will begin by answering one of the first questions

- Why can’t we use multiple single-task agents? A simple
answer is, we can, but we can also do better, usually by
exploiting these task structures. We will then revisit some
background to Reinforcement Learning, mostly to have a
consistent notation across the report. The next obvious ques-
tion, is what kinds of tasks do we keep referring to in the
MTRL? We answer this in Section 4. Since the literature on
this topic is vast - covering many directions - hence the term
“diverging", we will focus ourselves along certain lines of
thoughts in Section 5 and have a deeper look at a few rep-
resentative recent works like Meta-Learning, Hierarchical
Reinforcement Learning & even a method which generates
a single policy for multiple tasks in 6. Now, although MTRL
brings a lot of benefits like generality & lesser learning pa-
rameters, to name a few, we will try to cover some of the
more important challenges to MTRL in Section 7. Finally, we
will end this report with some future directions to MTRL &
conclude in Section 8.

1

Mudit Verma

2 WHY NOT MULTIPLE SINGLE-TASK AGENTS?
Some readers might reject the importance of Multi-Task
learning by assuming multiple single-task specific agents.
Reinforcement Learning (RL), for a long time, has focused
on improving single task performance & so this question
is valid in the sense that we hope RL algorithms are fast,
sample-efficient & general, but by no surprise conventional
single task methods struggle with all of these. Of course, the
use of single task agents, one for perfecting on each task, is
a possible solution, but not a viable one—first reason being
the speed of improving the agent’s policy for each task. The
original AlphaGo agent [21] is considered to be one of the
famous milestones in modern-day Reinforcement Learning,
but it is also popular for the time it took to train the agent.
Not only the time but also the number of examples (close to
30 million), which brings us to the topic of sample efficiency,
something which RL algorithms strive to improve to date.
Finally, generality is another issue & a change in the envi-
ronment reward function can make the agent fail miserably.
Not only the reward, but change in the state transition func-
tion can also negatively affect the performance. These were
some issues in training an agent for one task; the ultimate
goal, however, was to train several agents for their respective
tasks. A thing to note at this point is, AlphaGo [21] was a
high rated Go Player, which means it could essentially adapt
in some sense when it played against players using different
strategies. This gives some hint towards the agent being gen-
eral to some extent or rather, solving for different tasks. This
is what motivates much of the ongoing research in the field
of Multi-Task RL; the similarity between tasks is something
that can be exploited.

3 BACKGROUND
Reinforcement learning has long been used for sequential de-
cision making under uncertainty. For notational convenience
& reconciliation among different works, let us define a few
terms. A learning agent is required to learn how to interact
with an environment 𝑬 in discrete time steps 𝑡 ∈ {0, 1, 2..}.
Some works try to handle infinite timesteps, but we will
restrict ourselves to finite possible values of 𝑡 . A Reinforce-
ment Learning (RL) problem is often formalized as a Markov
Decision Process [5].
We can define an MDP as a tuple (𝑆,𝐴, 𝑝, 𝑅,𝛾), in some

works as (𝑆,𝐴, 𝑝, 𝑅,𝛾, 𝑑𝑜) where 𝑆 is the set of valid states &
𝐴 is the set of all possible actions. 𝑝 is the transition function
𝑆𝑥𝐴 → 𝑆 , or the dynamics of the environment. 𝑑𝑜 is the
initial state distribution. When action 𝑎𝑡 ∈ 𝐴 is taken in
state 𝑠𝑡 ∈ 𝑆 the state transitions to state 𝑠𝑡+1 ∈ 𝑆 and a
reward 𝑟𝑡+1 is obtained. Thought there are subtle variations
in expressing how the reward is modelled. The agent’s goal,
in a single-task setting is to follow a policy 𝜋 , which is a

mapping 𝑆 → 𝐴 can be deterministic or a distribution over
action, to maximize the expected return𝐺 = Σ𝑡=𝑡𝑛𝑡=𝑡1

𝛾𝑡−𝑡1𝑟𝑡 . We
can further define, action values and state values as 𝑞𝜋 (𝑠, 𝑎) =
E𝜋 [𝐺𝑡 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] and 𝑣𝜋 = E𝜋 [𝐺𝑡 |𝑆𝑡 = 𝑠].

As a general definition, works treat each task as a separate
MDP tuple, which may have different dynamics & tend to
exploit similarities in the substructure of the MDP. Hence,
we can define tasks as the set𝑇 = {𝐷𝑖 = (𝑆𝑖 , 𝐴𝑖 , 𝑝𝑖 , 𝑅𝑖 , 𝛾𝑖)𝑁𝑖=1}
for N tasks. However, many works sample a task from the
distribution of tasks rather than explicitly stating a set of
finite tasks. Even in those cases, the tasks are MDPs.

4 TASK & DOMAINS
[25] is one of the first works on the topic in concern & moti-
vates the problem with a simple real-world example, which
we would refer here too. The consider the case of a cleaning
robot in a hotel. At first glance, this may seem like using a
single task agent strategy should be enough; however, in a
real scenario, it is unlikely that any two rooms would be left
in the same state after the guests leave. This type of problem
is also considered by the more recent work onMeta-Learning
[12], where they want the agent to reach a goal location in
different maze configurations. However, this is definitely not
a standard testbed for the MTRL problem.

Section 3 defines a task as anMDPwhich can share specific
parts of the MDP with other tasks. To manifest this, we will
consider a few works and list out the tasks and domains they
have evaluated on.
The general trend of defining tasks has been to fix a do-

main & change the goal (which is the reward metrics). [12]
uses self-created 2D point navigation, in which the point
agent must navigate to reach a goal location. To stress that
their method is well suited for more complex tasks, they
also report results on Locomotion Task where the task is
to move a quadrupedal robot in several directions. [1] also
uses a quadrupedal robot called Cliff Environment same
as one used by [19]. They also use a Maze Domain [16]
for showing results on different domains. [29] also choose
a colored Maze Environment for their results; however,
they created this by themselves. Similar to the point 2D
navigation of [12], but more complex and realistic is Meta
World Domain [32] used by [30]. The Meta world task is
like ImageNet of robotics; it has 10 & 50 Manipulation task
challenges. However, the authors in [30] extend the goals
like “reaching out" of a robotic arm by generating different
locations (hence different tasks). [31] uses a Pioneer 3AT
robot model simulated on Gazebo; however, the “Task" is for
the agent to be able to perform 12 different movement-based
control tasks. [20] creates a more realistic domain of Block-
world with motion-based tasks for their experiments. [7]
report their results on a simple Gridworld domain where

2

Diverging Emerging Field of Multi-Task Reinforcement Learning

a task is different locations. Finally, PopArt [14], unlike other
works that have predominantly assumed tasks within the
shared domain, performs their experiments with different
games as their tasks. The agent essentially has to figure out
which game it is playing and then solve it. They use the
Atari-57 Games [4] for their first experiment. They also re-
port results onDmLab-30 [3] which is created by DeepMind
for testing reinforcement learning algorithms. DmLab-30 is
similar to Labyrinth & maze environments.

5 COMPARINGWORKS
Is the task known?
Section 3 introduces the notion of Task in an MTRL setting.
Further, Section 4 describes what these tasks are in terms
of the domains & goals used by various works. However, it
is not necessary that which task to achieve is known to the
agent. [14] is one suchwork that does not require a task index
information for the agent policy at the test time. The tasks are
57 Atari Games; hence they have different goals & different
state appearances. It is interesting as, in essence, the task
index information is embedded in the state space the agent
is in. This, however, does not make sense for other works
like [1, 12] etc. since, for them, a task is within a domain &
not across domains. Hence, although specific regions of a
state-space can still encode task-specific information, one
can imagine that it would be a hard problem. In general,
therefore, works defining a task within a domain, conditions
their policy on a task id. The other set of works that might
not require such a conditioning, are model-based scenarios
where the environment has been modified to supply only
task-specific rewards - then these rewards are indicators of
which task the agent is supposed to solve.

Negative Interference
Negative Interference (for Negative Transfer & Task Inter-
ference) is, in fact, one of the major issues for MTRL. Section
7 gives a detailed discussion on which methods are robust
against this.

Human Inputs
Human Supervision can prove to be an important part in
being able to learn a policy for a multi task RL problem. This
is clearly shown by [1] & discussed in Section 6. However,
not many works have utilized this supervision technique in
their methods. [1] lists out some related works like program-
interpreters that require human supervision and generates
discrete computational structures like sketches. Most other
methods in the field do not require such supervision, apart
from domain specification, which is implicit. Moreover, none
of the methods deal with the problem of interpretability for
human in the loop, since they have not assumed a human

for any part of the method, as per the surveyed works in this
report.

Model Free vs. Model-Based?
One of the primary advocates of model-based learning in
the MTRL setting is meta-learning. Since, when a model is
present, works like [12] or other single-task learners can
be deployed to solve for the [7] is model-based and figures
out, by process of elimination, which MDP is the underlying
one for the given task out of a set of MDP models. MTRL
problem. However, in general & especially for image-based
domains, learning a model is a difficult task. Recent attempts
like [15] have tried learning a model for Atari games, but
even they report that the learned models are not stable.

Moving on, there have beenmany attempts at usingmodel-
free methods for the MTRL problem. Most of the works
discussed here attempt to learn either a policy 𝜋𝑖 for some
task𝑇𝑖 (maybe by learning the whole family of policies 𝚷) or
they learn a base policy and improve that when w.r.t. task at
hand [12]. Model-Free gives an advantage of obtaining the
policy directly by using the popular deep neural networks &
since interpretability is not considered as an issue by these
works; model-free strategy gives decent results.

Online vs. Offline?
As we will see, not many of the methods here are on-policy
methods & use policy gradients. Also, many of the algo-
rithms have an (advantage) actor-critic architecture, which
is also on-policy. This restricts these methods to reuse any
interaction experience. [13] is one such offline technique,
whereas others like [1, 12], to name a few, are on-policy &
uses policy gradients (although an off-policy derivation is
possible with Importance Sampling). All of these methods
will be discussed in Section 6.

Reusing Experience
For settings which are off policy (that is the loss gradients are
computed from some fixed policy or some other policy) usu-
ally, store “experiences" and would sample these experiences
as i.i.d later on called as “experience replay". The problem
with existing experience replay is that some tasks may have
more “experience" in the dataset than others (which can
cause the Distraction Dilemma, more in Section 7). [2, 11]
propose a possible solution, named, Hindsight Relabelling.
The idea is while sampling for state transitions when explor-
ing for say a particular task 𝑇1; then it may so happen that
some of the experienced states, which may not be relevant
for 𝑇1 are actually relevant for another task 𝑇2. For example
a soccer-agent is trying to improve the task of kicking the
ball into the goal-post. However, while exploring, many of
the transitions were rewarding for the other task of passing
the ball. Under usual “experience-replay transitions would

3

Mudit Verma

have been thrown away since they are not good at the origi-
nal task, however, in hindsight relabelling, these transitions
would be “relabelled" as transitions for the task they are good
at, hence balancing & generating data for other tasks as well.

6 NOTABLE METHODS
The previous section refers to various works with respect
to a certain property like whether they consider the task
label as an input or not, or are is there a way for humans
to input some general knowledge about sub-tasks for a goal
task. In this section we will look at some popular works
which are driving the Multi-Task Learning research in recent
times. As a general trend, many works have tried learning a
model of the environment to use it for various tasks, which
is a hard task. Some other works have tried obtaining an
agent which, when trained on a few examples of a novel
task, can readily adapt. Other works have tried a different
approach altogether. They more explicitly exploit the struc-
ture of tasks presented in a hierarchical scheme of sub-tasks
or sub-modules. These sub-tasks may be inferred too from
experience, or maybe assumed to be given. A third, interest-
ing, line of work addresses two aspects of MTRL, training
parallelization & balancing tasks. It is considered by several
works that some tasks require less training than others, and
therefore this imbalance may cause performance issues. We
revisit this issue in Section 7.

Now we will look at these three directions in MTRL.

Meta RL
[12] defines the goal of “meta-learning" as being able to
train a model on a variety of tasks, such that it can solve
new learning tasks using only a small number of training
samples. In effect, theirs is an intelligent way of initializing
model parameters, such that it takes only a few updates to
get a sufficiently well-performing model. It should be noted
that meta-learning is model-agnostic as long as the model
parameters can be optimized via gradient-based updates.
Although “meta-learning" is a more general class that can
be used with several paradigms such as regression models
or classification models, they show how this can be used in
a Reinforcement Learning setting.
Revisiting Sections 3 and 4, [12] defines a task 𝑇𝑖 as an

MDP given by tuple (𝑆𝑖 , 𝐴𝑖 , 𝑝 (𝑇𝑖), 𝑅𝑖 , 𝛾, 𝑑𝑜 (𝑇𝑖)). The aim is to
adapt the model to Z(𝑇) distribution over tasks such that 𝑇𝑖
is drawn from Z(𝑇). Although, they consider Cost instead
of the more general Reward structure for the MDP. At each
time step, let, 𝑓𝜃 be the policy function that maps states 𝑠𝑡 to
control (or actions) 𝑎𝑡 at each time-step 𝑡 ∈ {0, 1, 2..}.

The original model is given by function 𝑓𝜃 , however, when
adapting to a specific task 𝑇𝑖 , 𝜃 becomes 𝜃 ′

𝑖 . Their meta-
objective then is defined as:

min
𝜃

Σ𝑇𝑖∼Z(𝑇)𝐿𝑇𝑖 (𝑓𝜃 ′
𝑖
)

A single gradient update towards making this model 𝑓𝜃
adapt to the new task 𝑇𝑖 , we perform one gradient step as :

𝜃
′
𝑖 = 𝜃 − 𝛼▽𝜃𝐿𝑇𝑖 (𝑓𝜃)

An easier way to understand the updates is, the meta-
optimization (including various tasks) is over 𝜃 , whereas the
objective is calculated using the updated model parameters
𝜃
′
𝑖 .
The meta RL scheme thus requires a model to be such that

the parameters can be updated via gradient based methods.
However, for Reinforcement Learning tasks, the 𝐿𝑇𝑖) function
which is a feedback or cost for the MDP, is given by Reward
or cost functions, which are usually non-differentiable. Work
on Policy Gradients, therefore, come in handy to adapt meta-
RL to use expected rewards as follows :

𝐿𝑇𝑖 (𝑓𝜃) = −E𝑠𝑡 ,𝑎𝑡∼𝑓𝜃 ,𝑝 (𝑇𝑖) [Σ
𝑡=𝑡𝑁
𝑡=𝑡1

𝑅𝑖 (𝑠𝑡 , 𝑎𝑡)]
Since the work uses policy gradients, they are a on-policy

algorithm & require new samples before for every gradient
update step. They use multiple multi-step rollouts to sample
trajectories using the current policy.
Stemming from this initial work on meta-learning, they

also try to leverage the knowledge of what components of
MDP is changing across tasks. A simple idea, they mention 1

is to include task identifiers 𝑧𝑖 which maybe one-hot encoded
versions of task id 𝑖 in task𝑇𝑖 . Then, they condition the policy
and Q values with these task ids as well.

Hierarchical RL
A lot of work has employed Hierarchical Reinforcement
Learning for Multi-Task learning problems. We will discuss
[1] as the representative work in this field; however, there
are other works such as [13] which leverages the options
framework [24] or [20] which defines hierarchical policies
and selects whether to use a learned policy or to learn a new
skill (like exploitation/exploration). We will first discuss [1]
and then, for brevity & completeness, briefly visit the idea
of [13].
[1] is an interesting work since they employ weak hu-

man supervision for MTRL. This is the only work among
those reviewed, which used some form of human input for
the MTRL setting. The main intuition behind their work is
whether informing the learner about the abstract structure
of policies, without specifying high-level behaviors use the
primitive actions can be useful. Policy Sketches, a term they
1https://cs330.stanford.edu/slides/cs330_mtrl.pdf

4

https://cs330.stanford.edu/slides/cs330_mtrl.pdf

Diverging Emerging Field of Multi-Task Reinforcement Learning

invent, to name a sequence of these un-grounded high-level
behaviors. These symbols can be shared across tasks, like
the high-level action of “get wood" that can be reused in
both “make plank" and “make stick" tasks. The main bene-
fit of such sketches is that now the shared latent structure
similarity between tasks is understood better. As one would
expect, their work outperforms other unsupervised methods
that do not provide any task-specific guidance. They also
compare the sketches with options framework; however, the
difference is that unlike options, these sketches do have a
formal definition attached to them beforehand. Their method
learns the respective sub-policy for each of these symbols in
a sketch & execute those, similar to how options work.
Getting into the mechanics, they also define Tasks as

MDPs; however, they limit tasks to only differ in reward
& initial state distribution. Hence tasks are performed in a
shared environment defined by the MDP tuple (𝑆,𝐴, 𝑃, 𝑅,𝛾)
are as defined before (Section 3). However, each task 𝑇𝑖 ∼ 𝑇
is a pair (𝑑𝑖𝑜 , 𝑅𝑖) where 𝑅𝑖 : 𝑆 → R is a task-specific reward
function & 𝑑𝑖𝑜 is the task-specific initial state distribution.
Further they assume that each task 𝑇𝑖 has a corresponding
policy sketch 𝐾𝑖 provided beforehand, which is a sequence
(𝑏𝑖1, 𝑏𝑖2, 𝑏𝑖3...) of high level symbols drawn from vocabulary
B. They use a decoupled actor-critic algorithm (decoupling
is of the policies from value functions) to solve the MTRL
problem.
Now, let 𝚷 be family of all task specific policies Π𝑖 such

that 𝚷 :=
⋃

𝑖 {Π𝑖 }. If 𝜋 represents the base policy, a function
on environment state, parameterized by some weight 𝜃 , then
the Multi Task objective to maximise is,

𝐽 (𝚷) = Σ𝑖 𝐽 (Π𝑖) = Σ𝑖E𝑠𝑖∼Π𝑖
[Σ𝑘𝛾𝑘𝑅𝑖 (𝑠𝑘)]

across tasks 𝑖 ∈ 𝑇 .
To maximize this objective they make use of policy gradi-

ents, gradient of the objective thus is,

▽𝜃 𝐽 (𝚷) = Σ𝑖▽𝜃 𝐽 (Π𝑖)
or

▽𝜃 𝐽 (𝚷) = Σ𝑖Σ𝑘 (▽𝜃 𝑙𝑜𝑔𝜋 (𝑎𝑖𝑘 |𝑠𝑖𝑘)) (𝑞𝑘 − 𝑐𝑖 (𝑠𝑖𝑘))
Note, 𝑘 is time-step of policy execution of a task 𝑖 & func-

tion 𝑐𝑖 is the advantage. Since 𝑐𝑖 depends upon the task iden-
tity & since the value function is itself unknown (a usual
proxy for advantage term), this 𝑐𝑖 is approximated with data.
They use another parameterized function approximator and
minimize the mean squared error with gradient descent. As
can be noted, like the meta-learning in previous Section 6,
this is also an on-policy approach and the family of policies
𝚷 is used to perform rollouts and save the transitions as
tuples (states, primitive-actions, sketch-symbols, rewards,
task-id). These stored transitions are then used to compute
the actor and critic gradients.

As a sideline improvement, for performing better over
complex tasks, they present a notion of curriculum training
where they try to focus the learner to learn “easy tasks" that
give high rewards from rollouts in the hope to learn optimal
sub-policy behaviors & then bootstrap these to solve for
more complex tasks which can have sparse rewards.
Their results show the work perform much better than a

baseline option-critic. An impressive result was the method’s
ability to perform well on a zero-shot task (performance
on a novel task, given its sketch, without any interaction)
& adaptation-task (performance on a novel task, with no
sketch, with few interactions). Finally, they also perform an
ablation, testing how their model behaves without task iden-
tity information and highlight the importance of informing
MTRL models of which the models are solving for.

For completeness, we will briefly cover [13], which lever-
ages the reusability of temporally extended actions (or in a
form, options) to improve upon the MTRL baselines. They
formulate a set of options, initially comprising of only primi-
tive actions and incrementally introduce one option at a time.
If the new option improves its objective, then it is kept, and
the algorithm continues; otherwise, the algorithm returns
the found options. The objective depends upon three sets
of parameters, 𝜃 for base policy, 𝜙 for option policy &𝜓 for
option stop function. The algorithm, therefore, initializes an
option based on these, optimizes these parameters through
gradient updates for some number of iterations over the ob-
jective & continues the main loop of option discovery until
their objective keeps on improving. Among many improve-
ments reported, a notable disadvantage of the work is that
the policy obtained is very sensitive to the set hyperparame-
ters.

PopArt & Impala
PopArt [14] and Impala [10] are works which, unlike the
rest of the discussed works, do not contribute much in the
form of RL setting or does not give a new way of learning
but rather does something very interesting. IMPALA [10] is
an agent by DeepMind whose strength is preforming actor-
critic updates in a distributed setting. To give context, in an
actor-critic setting, the actor learns a policy function from
states to distribution over action & the critic learns the state
value function - both of these perform an interplay while
calculating the loss. Formore details, readers can refer to [10],
which gives a brief over A2C. The usual A2C run is on-policy,
that is, say there are multiple actors and one learner, each of
the actors will copy the learner policy model & rollout to gain
their set of experiences. These experiences, after all actors
have performed their rollouts, will be used to update the
learner model. However, in a distributed setting as say one
of the actors A run its rollout, it is possible that the learner
has been updated because some other actor B finished its

5

Mudit Verma

task, now the rollout that this actor A is performing will give
stale information because it is based on an old policy model
that was copied when the rollout began. IMPALA tackles
exactly this problem via its v-trace correction. The details are
out of the scope of the global context here, so we will skip to
the part & discuss how it is used. (However, it was necessary
to know that the actors are working independently & stale
information can be corrected).

PopArt [14] uses the IMPALA architecture, and for a multi-
task setting, assumes that each actor has been assigned a
task 𝑇𝑖 to perform rollouts. Hence they have a scalable, dis-
tributed multi-task agent. However, it’s not this simple. Us-
ing IMPALA has its disadvantages - for a multi-task setting
- the updates are dependent upon the rewards in multiple
ways. In their setting, they assume that the transition dy-
namics and action space are shared among tasks, and each
task has its own reward function (in RL settings goals are
usually inferred from reward setup, unlike in planning where
goals can be explicit.). The state-space of MDP is defined as
𝑆 = {{(𝑠 𝑗 , 𝑖)}𝑠 𝑗 ∈𝑆𝑖 }𝑁𝑖=1, where 𝑖 is the task index as per our
notation throughout the report. It should be noted here that
the task index is supplied at the training time; however, at
the test time, PopArt is not conditioned on a task index. The
algorithm returns one policy 𝜋 (𝐴|𝑆) over this state-space &
since the task has to be inferred at the test time, this becomes
a much more difficult task than others. Section 5 covered few
thoughts on this.
PopArt leverages the popart normalization function in-

troduced in [28] (which was for value functions) to modify
the value function term in the v-trace equation of IMPALA.
They claim that the outputs of the normalization (the first
and second-order moments) are non-stationary & hence per-
form another trick to handle this. Finally, since the global
problem is to solve the multi-task problem & these were
for single tasks, they rewrite the equations to handle vector
versions of the value function & weights, where each index
𝑖 is for the corresponding task 𝑇𝑖 . They note that in the up-
dates, only the value function and not the policy function
is conditioned on task index 𝑖 . Now, since these values are
only needed for obtaining a better policy function in the
actor-critic arrangement, these can be thrown away later on
& only the policy function can be used without task index.

The method shows that they are able to outperform single
task DQN expert agents while using similar frame consump-
tion. Again, to emphasize their results, they do not take into
account the task indices. Here each task is a different Atari
Game from Atari-57 [4] or DmLab30 [3].

7 CHALLENGES TO MTRL
Multi-Task RL has many benefits, as we have seen in the
previous sections. However, it’s no free lunch, and so it has
some issues of its own. The idea of optimizing a policy over

multiple tasks together, obtaining a model, or the other meth-
ods we looked at, all exploited the structure between tasks.
However, if the similarity between tasks is a benefit, its duel,
the differences between tasks can pose robustness issues.
Further, its possible that even similar tasks but with different
importance can harm each other, this can be thought of like
survival of the fittest (tasks compete to get better upon the
shared resource of trainable parameters) or simply a case
of mode collapse, where more dominant tasks would thrive,
and other minor ones will suffer. These are the two major
issues with MTRL; however, we will also look at another
issue of Scalability & data efficiency that different works
have addressed.

Task Interference
Task Interference, as hinted before, is the problem of having
conflicting tasks, or part of these tasks. [26] also notes this
problem and calls it as “negative transfer" as they are inter-
ested in transfer learning methods for MTRL. [27] notes the
problem as jointly optimizing for several tasks can negatively
impact the single-task performance for many algorithms that
use shared parameters or transfer learning. They curb this by
their Distral Algorithm, which basically tries to have agents
specific to each task, and a shared policy for all the agents.
Then the goal for agents is to become experts in their as-
signed tasks but at the same time attempt to be as close to
the “distilled" shared policy.
A more recent work [30] uses a subtle intuition that one

should not naively use all the shared weights for all the tasks,
and rather they create a routing module & then route the
weights of the base policy network according to the task in
consideration & perform a soft combination over all these
routes to obtain the final task-specific policy. This work is
of interest as they visualize the t-SNE of probabilities for
each task from the routing network, which comes out to be
like a neat Voronoi diagram indicating the effectiveness of
their routing module. Moreover, they note that tasks that are
opposite in nature like “drawer open" and “drawer close" lie
at the opposite ends of the t-SNE, whereas unrelated tasks
lie far away. A similar idea, w.r.t . the routing module is
by [6], which uses an attention mechanism to group tasks
into sub-networks on a state level & avoids negative transfer
wherever possible.

[7] essentially guarantees that no negative transfer occurs,
with other claims about improving the sample efficiency.
The idea here is similar to the meta-learning idea of [12],
in that they also strive to improve for one task & then ac-
celerate towards other tasks; however, the technique and
approach is completely different. They define a “exploration-
exploitation" trade-off in optimizing over different MDPs
and show that their method is similar to the 𝐸3 algorithm,
which does not exhibit negative transfer.

6

Diverging Emerging Field of Multi-Task Reinforcement Learning

[8] is one work that tries to address this issue. They still
define tasks as MDPs but also assume that these tasks can
be represented by a shared linear approximation of some
subset of features. First, they point that negative transfer is
an issue for a Group-LASSO fitted-Q Algorithm, especially
when these tasks cannot be represented as a linear approx-
imation. Then they define a straight-forward “trace-norm"
or the feature matrix & use this as a regularizer in their loss
function and note that negative transfer is mitigated, but not
removed. This is one of the few works that present excellent
numerical analysis.
There are other works that note this issue & attempt to

solve it; however, wewill list a fewmore for completeness but
refrain from expanding onto those for brevity. [29] claim that
their method of modeling the distribution of task MDPs as a
hierarchical Bayesian infinite mixture model and then using
this model to get a prior for a new MDP (new task) limits
negative transfer. [17] takes the problem of MTRL a notch
further by tackling the problem of multi-task, multi-agent
RL under partial observability. They do so by introducing
a form of a decentralized distillation of single-task policies
into a shared policy.

Distraction Dilemma
Distraction Dilemma, although the term has not been used
by any work as per our knowledge of yet, [18] uses it in
the context of MTRL in reference to works we covered in
Section 6. The idea is simple & trivial, that when the goal
is to optimize a general policy function over multiple tasks,
some of the tasks will tend to dominate others, which is, that
these “dominant" tasks affect the learning procedure much
more than others leading to the policy being better at this
single-dominant-task performance & not on the rest. We
can also view the issue is similar to the situation of mode
collapse in Generative Adversarial Networks [9, 23], but of
course, GANs are different from MTRL.

[14] were the first to use the term “distraction" to refer to
the issue in concern. In fact, while other methods like [7, 27]
have mentioned mitigating the issue as a bi-product of their
work, in [14], the contribution is to handle the distraction
dilemma. They use a PopArt normalization over a previous
work IMPALA to tackle its issues & thereby improving upon
the problem of some dominant tasks causing the policy to
get distracted. A task can be a dominant one for a variety
of reasons, one of which being that the stored experience is
biased towards that task. [7] does not directly imply solving
this dilemma, but does say that their method performs an
implicit weighting of tasks. This, we think, should have a
positive effect for the Distraction Dilemma, however, there
are no results to support this claim as of yet.

[27] views this problem as the other extreme from the first
issue of Task Interference, we discussed in Section 7. Section

7 also discusses this work in brief, & the authors claim that
distillation helps mitigate this problem too.

Scalability
Scalability is an important issue for RL in general, and hence
it trickles it way down to MTRL as well. Here scalability
is the ability to scale well to many tasks for MTRL. These
tasks may, however, be similar or “opposite" in nature. To
bein with, [12] proves their technique is scalable by showing
results of their work on complex RL problems, the adaptation
on a high-dimensional locomotion task in the MuJoCo simu-
lator & achieves good results. [14] claims as part of possible
extensions that learning by on-policy methods may enable
their work to scale to many tasks. They build their work on
IMPALA [10] which uses the term “scale" with respect to scal-
ability in compute, however, this gives them an advantage in
learning the policy as well & they were able to report good
results on large-scale tasks. [6] shows that their approach
scales sub-linearly with an increasing number of tasks as
their attention scheme automatically learns to group related
tasks in the same of their architecture. They are among the
few works, which also talks about being efficient even when
action spaces of tasks are not aligned. Finally, [7] states that
their work is itself motivated by sample complexity analysis
& they prove that their work significantly reduced per task
sample complexity when performing MTRL. Although they
do not specifically comment about scaling to multiple tasks,
but one can hope that alleviating per-task load will affect
scaling to multiple tasks positively.

8 CONCLUSION
Multi-Task Reinforcement Learning (MTRL), majorly from
the perspective of deep learning, was discussed in this re-
port. MTRL is seen as an emerging field, with lots of relevant
literature available today utilizing modern research works
like deep neural networks. We motivated the use of MTRL
and how the idea stems from exploiting similarities among
structures of different tasks. We answered an important ques-
tion of why multiple single task agents are not the optimal
solution to the MTRL problem & that multi-task learning has
positive impacts upon speed, parameter size, generalization,
to name a few. Then, we presented the basic mechanics of
the RL setting, the formal definition of a task & did it in a
fashion to reconcile formalisms of various works discussed.
To manifest these formal definitions, we example many ex-
amples of tasks and their respective domains for a variety
of notable works. Once we had the basic machinery & un-
derstanding of the problem in place, we noted a few lines of
questioning like whether the task information is known to
the agent, what works have dealt with an online & offline set-
ting, brief on how does model-free & model-based learning
in MTRL algorithms behave, etc. We presented to the readers,

7

Mudit Verma

several notable works in diverging directions of Meta-RL,
Hierarchical RL & how distributed RL was leveraged for the
MTRL problem. Alongside this, various related works were
mentioned to get a better perspective on the problem. Last
but not least, we discuss three of the most noted problem
in the MTRL setting, namely Task Interference, Distraction
Dilemma & scalability. We showed how different works dealt
with these issues.

Since this is an active area of research, especially in con-
temporary times, we will end the report with some possible
future directions. PopArt [14] showed that it could be used
to rescale several reward functions (or tasks) and hence com-
bining it with a policy distillation like Distral [27] can be
effective. [1] is the only work that has the human input of
policy sketches. These sketches can also serve as possible
ways of involving interpretability into the RL mechanics. Ex-
planations and Interpretability are an active area of research
& symbol based explanations have majorly been used in AI
planning for human in the loop [22]. The report highlights
the need for a standard dataset to be followed by MTRL re-
searches. There may be several environments for different
types of task requirements, but unification is a must as it
becomes difficult to compare results across these diverging
works. Parallelization & Scalability is another area that future
researches must take note of. Future works should include
more extensive studies on Scalability and parallelization abil-
ity of their work & try to provide more formal guarantees
like IMPALA [10].

REFERENCES
[1] Jacob Andreas, Dan Klein, and Sergey Levine. 2017. Modular multitask

reinforcement learning with policy sketches. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR. org,
166–175.

[2] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel
Fong, Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel,
and Wojciech Zaremba. 2017. Hindsight Experience Replay. In Ad-
vances in Neural Information Processing Systems 30, I. Guyon, U. V.
Luxburg, S. Bengio, H.Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (Eds.). Curran Associates, Inc., 5048–5058. http://papers.nips.cc/
paper/7090-hindsight-experience-replay.pdf

[3] Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus
Wainwright, Heinrich Küttler, Andrew Lefrancq, Simon Green, Víc-
tor Valdés, Amir Sadik, et al. 2016. Deepmind lab. arXiv preprint
arXiv:1612.03801 (2016).

[4] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling.
2013. The arcade learning environment: An evaluation platform for
general agents. Journal of Artificial Intelligence Research 47 (2013),
253–279.

[5] Richard Bellman. 1957. A Markovian decision process. Journal of
mathematics and mechanics (1957), 679–684.

[6] Timo Bram, Gino Brunner, Oliver Richter, and RogerWattenhofer. 2019.
Attentive Multi-Task Deep Reinforcement Learning. arXiv preprint
arXiv:1907.02874 (2019).

[7] Emma Brunskill and Lihong Li. 2013. Sample complexity of multi-task
reinforcement learning. arXiv preprint arXiv:1309.6821 (2013).

[8] Daniele Calandriello, Alessandro Lazaric, and Marcello Restelli. 2014.
Sparse multi-task reinforcement learning. In Advances in Neural Infor-
mation Processing Systems. 819–827.

[9] Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie
Li. 2016. Mode regularized generative adversarial networks. arXiv
preprint arXiv:1612.02136 (2016).

[10] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan,
Volodymir Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley,
Iain Dunning, et al. 2018. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. arXiv preprint
arXiv:1802.01561 (2018).

[11] Benjamin Eysenbach, Xinyang Geng, Sergey Levine, and Ruslan
Salakhutdinov. 2020. Rewriting History with Inverse RL: Hindsight
Inference for Policy Improvement. arXiv preprint arXiv:2002.11089
(2020).

[12] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic
meta-learning for fast adaptation of deep networks. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70.
JMLR. org, 1126–1135.

[13] Francisco M Garcia, Chris Nota, and Philip S Thomas. 2020. Learn-
ing Reusable Options for Multi-Task Reinforcement Learning. arXiv
preprint arXiv:2001.01577 (2020).

[14] Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki,
Simon Schmitt, and Hado van Hasselt. 2019. Multi-task deep reinforce-
ment learning with popart. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 33. 3796–3803.

[15] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski,
Roy H Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn,
Piotr Kozakowski, Sergey Levine, et al. 2019. Model-based reinforce-
ment learning for atari. arXiv preprint arXiv:1903.00374 (2019).

[16] George Konidaris and Andrew G Barto. 2007. Building Portable Op-
tions: Skill Transfer in Reinforcement Learning.. In IJCAI, Vol. 7. 895–
900.

[17] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P
How, and John Vian. 2017. Deep decentralized multi-task multi-agent
reinforcement learning under partial observability. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70.
JMLR.org, 2681–2690.

[18] Jesus Rodriguez. 2019. Teaching Multi-Task Reinforce-
ment Learning Agents to Not Get Distracted. https:
//towardsdatascience.com/teaching-multi-task-reinforcement-
learning-agents-to-not-get-distracted-8d4b8e23deeb

[19] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and
Philipp Moritz. 2015. Trust region policy optimization. In International
conference on machine learning. 1889–1897.

[20] Tianmin Shu, Caiming Xiong, and Richard Socher. 2017. Hierarchical
and interpretable skill acquisition in multi-task reinforcement learning.
arXiv preprint arXiv:1712.07294 (2017).

[21] David Silver and Demis Hassabis. 2016. Alphago: Mastering the ancient
game of go with machine learning. Research Blog 9 (2016).

[22] Sarath Sreedharan, Utkash Soni, Mudit Verma, Siddharth Srivastava,
and Subbarao Kambhampati. 2020. Bridging the Gap: Providing Post-
Hoc Symbolic Explanations for Sequential Decision-Making Problems
with Black Box Simulators. arXiv preprint arXiv:2002.01080 (2020).

[23] Akash Srivastava, Lazar Valkov, Chris Russell, Michael U Gutmann,
and Charles Sutton. 2017. Veegan: Reducing mode collapse in gans
using implicit variational learning. In Advances in Neural Information
Processing Systems. 3308–3318.

[24] Richard S Sutton, Doina Precup, and Satinder Singh. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstraction in rein-
forcement learning. Artificial intelligence 112, 1-2 (1999), 181–211.

8

http://papers.nips.cc/paper/7090-hindsight-experience-replay.pdf
http://papers.nips.cc/paper/7090-hindsight-experience-replay.pdf
https://towardsdatascience.com/teaching-multi-task-reinforcement-learning-agents-to-not-get-distracted-8d4b8e23deeb
https://towardsdatascience.com/teaching-multi-task-reinforcement-learning-agents-to-not-get-distracted-8d4b8e23deeb
https://towardsdatascience.com/teaching-multi-task-reinforcement-learning-agents-to-not-get-distracted-8d4b8e23deeb

Diverging Emerging Field of Multi-Task Reinforcement Learning

[25] Fumihide Tanaka and Masayuki Yamamura. 2003. Multitask reinforce-
ment learning on the distribution of MDPs. In Proceedings 2003 IEEE
International Symposium on Computational Intelligence in Robotics and
Automation. Computational Intelligence in Robotics and Automation for
the New Millennium (Cat. No. 03EX694), Vol. 3. IEEE, 1108–1113.

[26] Matthew E Taylor and Peter Stone. 2009. Transfer learning for rein-
forcement learning domains: A survey. Journal of Machine Learning
Research 10, Jul (2009), 1633–1685.

[27] Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirk-
patrick, Raia Hadsell, Nicolas Heess, and Razvan Pascanu. 2017. Distral:
Robust multitask reinforcement learning. In Advances in Neural Infor-
mation Processing Systems. 4496–4506.

[28] Hado P vanHasselt, Arthur Guez,MatteoHessel, VolodymyrMnih, and
David Silver. 2016. Learning values across many orders of magnitude.
In Advances in Neural Information Processing Systems. 4287–4295.

[29] Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. 2007.
Multi-task reinforcement learning: a hierarchical Bayesian approach.
In Proceedings of the 24th international conference on Machine learning.
1015–1022.

[30] Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. 2020. Multi-
Task Reinforcement Learning with Soft Modularization. arXiv preprint
arXiv:2003.13661 (2020).

[31] Zhaoyang Yang, Kathryn E Merrick, Hussein A Abbass, and Lianwen
Jin. 2017. Multi-Task Deep Reinforcement Learning for Continuous
Action Control.. In IJCAI. 3301–3307.

[32] Tianhe Yu, Deirdre Quillen, ZhanpengHe, Ryan Julian, Karol Hausman,
Chelsea Finn, and Sergey Levine. 2019. Meta-world: A benchmark
and evaluation for multi-task and meta reinforcement learning. arXiv
preprint arXiv:1910.10897 (2019).

[33] Yu Zhang and Qiang Yang. 2017. A survey on multi-task learning.
arXiv preprint arXiv:1707.08114 (2017).

9

	Abstract
	1 Introduction
	2 Why not Multiple Single-Task Agents?
	3 Background
	4 Task & Domains
	5 Comparing Works
	Is the task known?
	Negative Interference
	Human Inputs
	Model Free vs. Model-Based?
	Online vs. Offline?
	Reusing Experience

	6 Notable Methods
	Meta RL
	Hierarchical RL
	PopArt & Impala

	7 Challenges To MTRL
	Task Interference
	Distraction Dilemma
	Scalability

	8 Conclusion
	References

