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Abstract

In the presence of a restraining bolt that models features of the
world that are distinct from those modeled by a reinforcement
learning agent, a fully observable setting is assumed for the
developer of the restraining specifications. However, the real
world is often noisy and partially observable. We consider the
setting where the generator of the specification infers a noisy
map of the features, thereby disentangling the bolt’s observa-
tion from its feature space. A set of low and high probability
fluents is extracted from bolt’s observations which are used
to specify the restrictions in linear temporal logic. We em-
pirically evaluate our approach’s performance for noisy re-
straining bolts with AI agents and show that the agent can
still learn to effectively conform to the correct specifications
through appropriate reward shaping.

1 Introduction
Recent years have seen a rise in learning-based agents that
employ various techniques to enable them to learn behaviors
that can be used to solve complex problems. While these
techniques (Wiering and Van Otterlo 2012; Kaiser et al.
2019; Achiam et al. 2017; Gullapalli, Franklin, and Ben-
brahim 1994; Lin 1993) use acquired experience to learn
policies that maximize an agent’s utility, they fail to con-
sider constraints or specifications imposed by external enti-
ties. For example, consider a hospital security guard work-
ing along with a guard robot. The security guard may be a
human who has access to features of the world like the secu-
rity clearance of a person. The guard robot might have been
programmed to patrol the area and look for threats but may
not have access to the security clearance of people work-
ing at the hospital. In this situation, the human guard may
impose a constraint on the robot as avoid performing safety
checks on people with high-security clearance. This is one
of the examples representatives of scenarios with constraints
enforced by external entities.

Multiple approaches (Littman 2015; Littman et al. 2017;
De Giacomo and Vardi 2013; De Giacomo and Rubin 2018;
De Giacomo et al. 2019, 2020) have attempted to solve such
problems by incorporating a human, or the restraining bolt
- an entity who restrains the agent’s behavior - a specifi-
cation which translates into rewards for the agent. De Gi-
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Figure 1: Overall Flow: The agent receives a feature set and en-
vironment reward from the world. The restraining bolt receives a
noisy observation of the world, and the presence of fluents is esti-
mated using binary classifiers. The restraining specifications over
these fluents represented as LTLs are converted to DFAs. The fluent
probabilities from classifiers and satisfaction of the state in DFAs
are then used to shape the rewards for the learning agent.

acomo et al. (2020) proposes an approach that uses LTLf
(and LDLf ) formulas to encode constraints. LTLf formu-
las encode reward functions using a deterministic finite-state
automaton (DFA). Features used to define states for the DFA
do not necessarily share environment features with the agent
and can be designed independently. While this approach is
able to impose such constraints, it assumes that the restrain-
ing bolt can deterministically infer the current state of the
DFA. Following our example of security guard and robot,
the guard might be using camera feeds in determining who
the person is and thereby determining their security clear-
ance. Such an inference can be noisy due to various rea-
sons like the image observation is noisy, there are occlusions
in the image, perception disabilities of the restraining bolt,
etc. Such a scenario would not be handled by existing ap-
proaches like (De Giacomo et al. 2019). Another drawback
of (De Giacomo et al. 2019) is that it only works with a
factored state space for both the agent and the restraining
bolt. Many problems may not have a factored state space and



Figure 2: (a) Top: Augmented DFA with decomposed fluents e
and l. The number of edges between state 0 and 1 are 2ne = 4. (b)
Bottom: Original DFA for the LTL: Eventually(e&t). Note that the
number of edges between state 0 and 1 is 1.

rather have an image state observation for the agent. More-
over, we believe that handling noisy mappings from human
observation in the advice framework is a novel effort since
most of the works in this direction assume a symbolic map-
ping of the environment. We argue that perfect classifiers
are a myth and handling noisy mappings from observation
to fluents must be handled in the advice framework.

In this paper, we present an approach that not only allows
for an image based state input for the agent, but also re-
laxes the assumption by De Giacomo et al. (2019) that a Re-
straining Bolt has perfect knowledge of fluents of the world.
That is, our approach is capable of accepting noisy obser-
vations for the restraining bolt. Given that the sensors are
noisy, the restraining bolt observes a probability distribution
over propositions over their observation. This requires aug-
menting the DFA induced by the bolt’s constraints to handle
different levels of certainty over the observed state variables.
Our approach introduces low and high confidence over ob-
served propositions and uses these confidence levels to pro-
vide additional rewards. Although a naive augmentation to
DFA can cause the number of transition edges to explode
exponentially in the number of fluents, we propose an al-
gorithm to achieve the same effect as the augmented DFA
without modifying it. Similar to the previous work (De Gia-
como et al. 2020), our approach does not assume similar vo-
cabularies for the agent and the restraining bolt. Contrary to
the current work, our approach handles noisy sensor models
for the restraining bolt, and its representation is independent
of the representation of the agent’s state space. Our method
has the ability to work with different representations such as
factored, relational, and images. Finally, De Giacomo et al.
(2019) requires that a restraining bolt has a domain model of
the world in their vocabulary, which implies that for speci-
fying even a simple constraint, the complete equivalent do-
main model must be obtained, which may contain many un-
necessary vocabulary terms. This work, on the contrary, only
requires vocabulary fluents for which a constraint has to be
specified.

The remaining of the paper is structured as follows: sec-
tion 2 details the approach used by the presented work, and
section 3 presents the results for the empirical evaluation of
our approach.

Algorithm 1: Transitioning over augmented DFA
Result: Reward, Next state over augmented DFA
Input: Original DFA D, Current DFA state q, Probabilities

of Fluents C ;
if C(e) ≥ 0.5 then

Truth(e) = T
else

Truth(e) = F
end
E list = D.get edges(q) ;
E = e in E list s.t. δ(q, T ruth, e) = 1 ;
initialize r = 0 ;
for symbols in e do

if 0.5 ≤ C(symbol) ≤ 0.9 then
r = r - d.LowConfidenceCost ;

end
end
if e is a terminal state then

r = r + d.TerminalReward
end
return r, e ;

2 Framework & Approach
2.1 Setting
The aim of De Giacomo et al. (2019) is to incorporate re-
straining specifications to influence the final policy of the
agent. Hence, their setting involves a world W where an
agent Aag is acting by taking actions form the action set A.
However, the agent’s sensors allow it to perceive the state
s ∈ S such that s is derived fromW . Another entity, a Re-
straining Bolt perceives the same world as l ∈ L which, in
turn, is derived from W . Aag models its task as an MDP
Mag =< S,A, T , R > where T : S × A × S → [0, 1]
is the transition function and R is the reward given by the
environment. A restraining bolt also specifies a vocabulary
of fluents F and a set of m LTL specifications ϕ with re-
straining rewards r as the set {ϕi, ri}i=mi=0 . The main re-
sult, Theorem 6 of (De Giacomo et al. 2019) states that
this is a Non-Markovian Reward Decision Process (NM-
RDP) problem and can be reduced to an equivalent MDP
M =< S ′,A, T ′,R′ > where S ′ = S ×Q1 ×Q2..×Qm,
where Qi is the set of states of an equivalent Determinis-
tic Finite State automata (DFA) Aϕi of the LTL formula ϕi.
Similarly, the same set of actions A is used and T ′ is the
transition function defined as S ′ × A × S ′ → [0, 1]. The
reward R′(s, q1, q2..qm, a, s

′, q′1, q
′
2..q

′
m) =

∑
i:qi∈Fi

ri +

R(s, a, s′), where Fi is the set of terminal states in Aϕi
.

2.2 Proposed Work
To allow our approach to be invariant to the representation
of the agent’s state space, we use a deep neural network
to encode the state space of the agent and learn a proba-
bilistic policy π : S ′ × A → [0, 1]. We decompose π as
π(s′) = H(G(s)|Q) where s′ =< s,Q >, function G rep-
resents a set of convolutional layers that act as a feature ex-
tractor, and H represents a set of dense layers that are re-
sponsible for predicting the action distribution. | is a con-



catenation operation, and Q is the concatenation of all the
one-hot vectors for each DFA state qi in each DFA.

We do not require a complete domain model in the fluent
vocabulary L. Rather, we allow a human observation of the
world statew as hl which in turn is approximated into fluents
in the set L. This approximation is done by any black-box
classification algorithm C(hl) × [0, 1] returning the proba-
bility of the fluent being true. Note that, we have a binary
classifier for each fluent taking the input hl which can either
be a factored or an image-based representation of the world.
This is where we capture the possibility of noise in the hu-
man observation since the classifiers can be noisy. This al-
lows the agent to not only adhere to the specified constraints
but also enable the bolt in the loop to observe it.

We propose algorithm 1 to incorporate the notion that the
agent should comply with the constraints in a manner that
is observable by the bolt. Figure 2 (b) shows the DFA for
the LTL formula “F(e & t)” which translates to “Eventually
the proposition ‘e&t’ is True”. We decompose the fluent e as
eh, el, and !e s.t. eh(el) represents that the bolt is able to infer
the presence of the fluent with high(low) confidence and !e
represents that the fluent is absent. Out approach determines
the truth value of these fluents using the classification score
predicted by the classfier as follows:

e =


eh C(e) > 0.9

el 0.5 ≤ C(e) ≤ 0.9

!e C(e) < 0.5

(1)

By decomposing the fluent in this manner, we are able
to track not only the attainment of the fluent e but also the
confidence with which it is achieved (i.e. high or low). One
possible way to achieve this is to modify the edges of the
DFA to track the high and low confidence fluents. Fig. 2 (a)
expresses a possible equivalent DFA that is obtained by de-
composing e. This means that each edge in the original DFA
fig. 2(b) with ne fluents (without negation) would have 2ne

number of edges in the corresponding DFA fig. 2(a).
We now discuss how such a decomposition helps in shap-

ing the rewards for the agent and how does the Alg. 1 bypass
the need for modifying the DFA.

In fig. 2(b), a transition δ(qi, l, qj) happens from the state
qi when proposition l (composed of fluents inL) is evaluated
as True. Fig. 2(a) extends this idea to instead make a tran-
sition over the decomposed variant of the fluent e. Hence,
the fluent set L is augmented with the decomposed fluents
as per eq. 1. Further, we augment the reward function r(qk)
for the DFA to impart a negative reward whenever a transi-
tion is made over an edge l, i.e. whenever the presence of
fluents is known with low confidence to the restraining bolt.
Note that, even though l may consist of fluents known with
low confidence, our method still allows the transition from
qi to qj , albeit with a negative reward. The choice of this
negative reward is dependent on the terminal reward of the
DFA as chosen by the Restraining Bolt. This negative re-
ward is often set to a value less than the terminal reward so
that the transition eventually provides a smaller but positive
additional reward.

Finally, as pointed out, the transformation of the DFA
from fig. 2(b) to the DFA in fig. 2(a) will require adding

exponential number of edges. This will significantly hamper
the DFA transition computation. Our proposed Alg. 1 pro-
vides the intended effect of augmented DFA in fig. 2(a) with-
out any modifications to the original DFA. The algorithm
runs in two phases; in the first phase, it selects a transition
based on the truth value of fluents determined using a thresh-
old probability of 0.5. The second phase uses the confidence
values of el (low confidence) fluents to provide a negative
reward. Note that, as a simple extension to this work, re-
wards imparted for transitioning over low confidence fluents
can easily be modified to depend upon the probability P (e)
rather than giving a fixed reward for each low confidence
fluent.

3 Empirical Evaluation
While our approach is invariant to the agent’s state space’s
representation, we implement our approach with image-
based observations for both the agent and the restrain-
ing bolt. Our empirical evaluation is aimed at evaluating:
I) What behaviors does the agent learn in a setting where
the restraining bolt’s observations are noisy? II) Can a vi-
sual observation be used to learn constraints specified by
the restraining bolt? We implement our approach using three
RL algorithms: asynchronous actor critic (A2C) (Mnih et al.
2016), proximal policy optimization (PPO) (Schulman et al.
2017), and deep Q-networks (DQN) (Mnih et al. 2015). Im-
plementations of PPO and A2C were used from the repos-
itory https://github.com/lcswillems/torch-ac. We update the
input embedding of these networks (after the feature extrac-
tion layers) to include the DFA’s state. To minimize the in-
formation loss, we append the DFA-state after the convolu-
tional layers which compute latent representations for the
images inspired by the literature in the field of natural lan-
guage processing. We evaluate our approach in two domains
with a total of five constraints. Source code of our imple-
mentation is available at https://bit.ly/3snrh0H.

3.1 Gridworld
The first domain has a 6x6 grid where the goal of the agent is
to reach a location marked by the green square, as shown in
3. The actions available to the agent are move forward, turn
left or right in-place, and no-op. The agent receives a reward
of −1.5 for each step and a reward of +100 for the terminal
state where it reaches the green square. We use a total of four
constraints for the agent in this setting. Table 1 specifies the
exact LTL formulas used to specify the constraints. These
LTL formulas encode the following constraints: i) Reach a
state where the agent is on the edge and continue to be on
the edge. ii) Avoid the top-right corner. iii) Visit the top-right
corner only once. iv) Visit either the top-right corner or the
bottom-left corner (not both) only once. We collect posi-
tive and negative samples from bolt’s-observation space to
learn binary classifiers for the fluents 〈 onTopRightCorner,
onBottomLeftCorner, pointingUp, pointingDown, pointin-
gLeft, pointingRight, onEdge 〉. While the domain appears
to be simple, the noncontinuous image-based state represen-
tation makes it difficult for the algorithms to learn due to
lack of gradients for back-propagation.



Figure 3: Execution of the policy learned with constraint provided by the restraining bolt requiring the agent to move only on the edges of
the environment.

LTL specification Algorithm Rcmax Rπ Nsteps Nframes
Constraint
followed

G(o)
PPO 94 79.48 90 25k X
A2C 94 63.64 75 80k X
DQN 92 74.42 82 4k X

!F(t)
A2C 82 80.71 60 50k X
DQN 82 79 59 4k X

F(t and X(!(F(t))))
PPO 92 77.78 87.13 133k X
A2C 92 74.54 104.2 165k X

(F(t and X(!(F(t)))) and !F(b))
or (F(b and X(!(F(b)))) and !F(t)) A2C 92 78.42 78 20k X
F(c) DQN — -240 2900 2.8m ×

Table 1: Results for Gridworld domain where e = on edge, t = top right corner, b = bottom left corner, and u = facing upwards, and Breakout
domain where c = brick clear left. Here, e, t, b, u, and c are fluents used to specify the LTL specifications.

3.2 Breakout
The second domain we chose to evaluate our system is the
Atari Breakout. The goal of the agent is to break all the
bricks using a ball. Actions available to the agent are to move
the pedal left and right and to fire in the left, up, and right
directions. The agent receives a reward of +1 for breaking
each brick in the environment. An episode ends when the
pedal misses to hit the ball. The table 1 specifies the con-
straints provided by the restraining bolt. These constraints
enforce the agent to break the left column of bricks eventu-
ally. Unfortunately, the DQN agent was not able to solve the
domain, and instead obtained a high negative reward. We in-
tend to further test the method with other RL algorithms on
Atari to substantiate results.

Analysis of the results: Table 1 provides the detailed re-
sults for our experiments. The table includes LTL formulas
for the constraints, the RL algorithm used, the total possi-
ble reward with the constraint (Rcmax), the average reward
achieved by the agent using the policy learned through our
approach (Rπ), the average number of steps taken by the
agent to reach the goal (Nsteps), the number of frames used
to learn the final policy (Nframes), and boolean value de-
noting whether the constraint was followed or not. The first
two LTLs test whether a specification as advice (positive re-
inforcement) and as a constraint (negative reinforcement)
were correctly learned by the agent. The third LTL veri-
fies whether this work can actually exercise temporal re-
ward specification like agent must only visit the top right
corner only once. The fourth LTL formula uses multiple flu-
ents along with a temporal reward. Finally, we also test out
our method on Atari-Breakout. The average return achieved
by the learned policies for the Gridworld clearly show that
the agent was able to reach the target goal whenever the
constraint was provided while also complying with the con-

straints. Fig. 3 shows an execution of the policy where the
agent was constrained to move only on the edges of the envi-
ronment. The policy synthesized by the agent clearly shows
that the agent complied with the constraint and continued
to stay on edge. Inspection of case 4 : In LTL 4, the classi-
fier for “b” fluent, at best, gave the probability 0.87; hence
it was always either bl or !b. Moreover, the fluent t worked
perfectly over the grid world. As expected, the agent avoided
the bottom left corner and chose to detour to the goal via top
right corner, even though the DFA terminal rewards for a
detour via either of the corners were the same. This implies
that when the constraint specification is same for either go-
ing from top-right or bottom-left corner, since observation of
bottom-left corner is noisy, the agent made pro-active efforts
to instead detour via top-right corner.

Additional videos of obtained policies can be found along
with the code. The verification of whether the advice was
followed was done by manual inspection by the authors.

4 Conclusions
In this work, we extend the restraining bolt framework by
De Giacomo et al. (2019) to allow for an image-based state
space for the agent as well as an image-based noisy obser-
vation space for the restraining bolt. We relax the assump-
tions made by the previous work and propose an algorithm to
shape the rewards by accounting for the noisy observations
of fluents obtained by the restraining bolt. We evaluate our
approach over multiple fluents in a Gridworld and an Atari
Breakout setting. Our method accepts any LTL specification
for all the OpenAI gym environments and our implementa-
tion is much more customizable and modular than previous
work. Additionally, we experienced that shaping the LTL re-
wards is a complicated task (Şimşek and Barto 2006) and de-
serves further attention. Future work in this direction would
require rigorous evaluation with more complex domains and
other reinforcement learning algorithms.
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