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Abstract—This document is a intended to record and report
the findings of the Semantic Web Mining course group project.
The objective of the project is implementing recommendation
systems using multiple methods to analyse and compare the
efficiency of each against a baseline model implementation using
various metrics. More precisely, the baseline model would be
implemented using matrix factorization technique. This is used
to compare the other two methods explored - Deep Neural
Network based approach and reinforcement learning method.
The MovieLens data set is used as data source to train and test
the implemented methods.

Index Terms—Recommender systems, Matrix Factorization,
Reinforcement Learning, Deep Neural Networks

I. INTRODUCTION

The course acquainted our team the techniques and methods
used in present day businesses that rely on recommendation
systems such as - streaming platforms, informational media
guides, e-commerce, blogs etc. The common challenge with
most of the present day consumer services are predominantly
customization and recommendation of products based on cus-
tomer profile. An effective recommendation system need to
factor in parameters that reflect the personality or profile of
the user, as well as a good understanding of the options that
could be recommended to the user, along with the context at
the time of use. The primary issues discovered were - copious
amount of data to analyse, biased user data, semi-structured
format of the data. In the following section, we would try to
delineate the approach taken to design and evaluate the each
method of implementation.

II. PROBLEM STATEMENT

The goal of this project is to design and implement a
Movie Recommendation system based on various algorithmic
approaches to evaluate, compare and contrast each of them
based on various metrics to determine their overall effec-
tiveness. It will also demonstrate how well each of these
algorithms mitigates or suffers from common problems that
arise when designing a Recommendation System, such as the

cold start problem, non-stationary customer preferences, data
privacy and user profiling, robustness to negative sampling,
model compatibility, reproducibility etc. At the end of the
project we expect to have a detailed analysis based on the said
performance measures over three paradigms of recommender
systems, the traditional Collaborative Filtering method (uti-
lizing the subclass of Matrix Factorization ), a Deep Neural
Network based method and finally a Reinforcement Learning
based method.

III. RELATED WORKS

To understand and evaluate various implementations of rec-
ommendation systems, we need to perform review of the data
source domain and the related literature review for awareness
of implementation techniques and algorithms.

A. Literary review summary

We performed review of recommendation systems from
three fronts, Collaborative filtering methods, deep learning
based solutions and finally, deep reinforcement learning based
approaches.

A popular sub-class of collaborative filtering algorithms
that has been successful is Matrix Factorization. This relies
on decomposing the user-item interaction matrix. A intuitive
understanding of vector representation and the effects implied
through factorization and decomposition proved critical in
understanding incisively the approaches to handle explicit
interactions - like ratings as in Frunk MF [9], or implicit
interactions - such as ”likes, bookmarked” as in SVD++ [10].
The primary motive of this review was to evaluate the detail
of user data embedding or to say distinctively identify data
based on the differences in embedded knowledge. Here we are
concerned about the implementation of a model for primarily
producing user rating prediction and Top-K recommendations
results.

For further understanding of constraints with implementing
recommendation systems, common one’s like dimensions of



the test and train data in deep learning model training, optimiz-
ing the efficiency of parameter tuning for DL (Deep learning)
methods, references to prior research paper provided an good
understanding of the same (Natural Collaborative Filtering
[7], Neural Network Matrix Factorization [3]). Common pre-
processing included removing duplicates, removing biased
data. The literary review helped in initial feature reduction
by introducing compounded/ derived columns.

The other end on the spectrum of deep learning approaches
have typically been end-to-end strategies which model the
problem as that of supervised learning (Deep Factorization
Machine, [5]). There has also been some surge in utilizing
the Graph Neural Networks for modeling the high level inter-
actions. This framework makes it easy to integrate user/item
information as a social network

Reinforcement Learning is another branch of AI that has
been leveraged for the problem of recommendation systems.
The idea is to utilize feedback from an environment where
the system (or agent in this case) is acting. These feedbacks
could be simulated from existing data or could be given in
real time by users in the loop. In many cases, the recom-
mendation system decision making is formulated as a finite
Markov Decision Process that recommends an item according
to the current state (and keeps no memory of the past, thus
Markovian). Several popular RL algorithms have been adapted
to be used for the recommendation systems like Policy Search
(for example Actor-Critic models, REINFORCE [1], [4], [14]),
or Value based methods (like DQN [2]). A direct benefit of
utilizing an RL approach over single-step decision making like
classification is the richer expressive power in modeling the
state and reward feedback, for example as in the KERL [12]
framework the authors could incorporate a knowledge base
into the reward function to address sparsity and cold-start.

A general problem in all the above methods has been one
of negative sample. Discovering informative negative feedback
from missing data is hard, especially in the case of implicit
interactions. Several works exist, like KG policy network [13],
that posit different ways of generating negative samples from
data that are further fed to above-mentioned algorithms. As
we will realize through our exploratory analysis that the rein-
forcement learning algorithm indeed helps with the negative
sampling. Additionally, the RL approach also helps with the
possible distribution shift in the human preference data with
its ability to gradually adapt with changing preferences.

IV. SYSTEM ARCHITECTURE & ALGORITHMS

The primary objective is to evaluate the performance of
different techniques implemented on top of the baseline model
and that gave an good understanding of the strengths and flaws
of each implementation method. This helped to implement
hybrid systems with a more dynamic recommendation - based
on the context and query.

The initial phase of the project was about a concrete
understanding of the domain and pre-processing or grooming
of data. This helped us in making sense of the basic analysis
on the data - for example observing a set of user rating

data under demographic constraints and other attribute filters
gave an intuitive idea of user mentality towards rating, genre
they choose to watch, and sometime a part of context of
environment (Why some movies got high ratings during some
parts and time in the past relating to social events pertaining
to the period in scrutiny). This analysis proved critical in
grooming the data for each implementation. By introducing
derived features to the dataset to involve bias for genuine
reviews, removing duplicates and redundant dataset.

The overview diagram explains our system architecture in
Figure 1. We first obtain the dataset, that is the movie lens
dataset for several users’ rating on several movies. We then
filter the data to remove any outliers, missing data points, and
add several fields like average rating. As part of the prepro-
cessing step we also bin several continuous fields like age
into discrete buckets. We then train three different methods,
the Matrix factorization method that takes in the User Matrix
and the Movie-Item Matrix as input, the Neural Collaborative
Filtering approach that takes in the embeddings of the user-
item matrices and finally the Reinforcement learning approach
that requires environment semantics. Finally, all of these
algorithms have been implemented with a similar interface to
support the demo-webpage to recommend top-K movies to a
given user. We also allow the system to take in a user-id and a
movie-id information to predict the rating that the user might
attribute to that movie.

A. Matrix Factorization

The matrix factorization algorithm is an extremely popular
algorithm for recommender systems and became particularly
popular during the Netflix Prize challenge. There exists many
variants of the Matrix Factoriazation approach, for example
the FunkMF, SVD++, Assymetric SVD, Group specific SVD
to name a few. Since we are using the matrix factorization
algorithm as a baseline, we implemented the vaniall MF
(FunkMF) algorithm.

The idea of using matrix factorization as a baseline is that
it intuitively represents the projection of user preferences to
their ratings to extract values of un-rated movies without any
convolutions as such in AI models. The other factors were
the efficiency and time taken to perform these operations. As
we are dealing with matrices with multiple columns, the idea
is to decompose the User-Item Matrix (R) into User-Features
(P), Features-Item (Q) matrices, where Features are the latent
features. Matrix Factorization/ decomposition are methods that
reduce a matrix into constituent parts as by the following
equation :

R ∼ P ×QT = R̃ (1)

(Eq. 1) that elucidate calculations of complex matrix oper-
ations. Here we obtain the constituent matrices P & Q using
gradient descent.

B. Deep Neural Network based Collaborative Filtering

Collaborative filtering is a good technique to identify rank-
ing of in a collection of items based on the user interest.
We can use collaborative filtering to identify lists like most



Fig. 1. System Architecture and Proposed Algorithms

watched, most anticipated, general top-k recommendation. The
matrix factorization task discussed previously would embed
the constituent matrices in a latent space. We would use these
embedded matrices to perform collaborative filtering (Fig. 2,
3).

In this approach, similar to matrix factorization method,
we allow non-linear embedding space. For this solution we
take advantage of DNN (Deep Neural Network) ability to be
efficient in predictive analysis. Based on the data the network
is provided, it can predict about future action or missing ratings
in our case.

We have implemented the rating prediction using DNN
using Pytorch. PyTorch is one of the popular deep learning
frameworks for AI and Machine Learning. Pytorch uses ten-
sor data structure and uses a training algorithm called back
propagation.

In the implemented model, we use six fully connected
layer and a Relu activation layer and a dropout layer. The
number of connected layers and the dropout constraints are
instructed by the primary evaluation by comparing with the
matrix factorization method results.

Additionally we also experimented with popular libraries
such as tf recommends to obtain Deep Neural Network per-
formance benchmarks and found that our implementation at
par with other DNN implementations in terms of performance.

C. Deep Reinforcement Learning Approach

We model the problem of recommender system as a Markov
Decision Process as M =< S, T,A,R > where S is the state
space is a tuple of ¡Mean Movie Rating, Movie Embedding,
User Embedding, Mean User Rating, User Occupation, User
Gender Bucket, User Age Bucket¿. The actions are to predict
the rating the user would give for a given movie. Note that,
the fact that we train the data for all the users in conjunction

Fig. 2. Vector embedding of user matrix for the Deep Neural Network based
Neural Collaborative Filtering

Fig. 3. Using embedded matrices in collaborative filtering for DNN approach

makes this process a collaborative filtering approach, where
the system takes into account similarities between users to
determine the rating they would give to a given movie. Finally



our reward function is as follows :

R =

{
1 yp = y
log(yp−y)

2 otherwise
(2)

The objective here is to be able to predict the rating a user
ui will give for a movie mj . Once we predict the movie
rating rij for the problem tuple < ui,mj > we are ready to
recommend k movies to the user. In the held out set that we use
to recommend movies, we first randomly sample 100 movies.
Within this set of 100 movies we rank them by the rating
prediction function via our RL approach. We then finally pick
the top−k movies. A major advantage of the random sampling
before we finalize our top-k recommendations, we realized is
in the coverage metric as shown in the results section. We find
that this random sampling significantly improved the catalog-
coverage with marginal effect on other metrics like top-10
accuracy, RMSE, MSE etc.

For training the rating prediction function, we utilized the
Proximal Policy Optimization algorithm. This is an on policy
algorithm that tries to take small gradient updates for the un-
derlying actor-critic neural network. This algorithm is amongst
the best performing algorithms in the field of reinforcement
learning, especially in the cases of rating distribution drift.
A common problem with recommender systems is the fact
that the human preferences are likely to drift with time. The
Reinforcement Learning approach helps with this problem
since algorithms like PPO are more robust to distribution shifts
in the reward functions (which in effect correspond to the
human preferences).

V. DATASETS & PREPROCESSING

The MovieLens dataset, widely used in research and ed-
ucation, is the preference. Description of movies by users
expressed in the form of (user, item, rating, timestamp) tuples.
We used the ”ml-latest-small” dataset. It describes the 5 star
ratings, genres and descriptive short phrase’s metadata. The
dataset, available as comma-separated-values files(links.csv,
movies.csv, ratings.csv and tags.csv), contains 100836 total
ratings for 9742 movies created by 610 distinct users. The
ratings are described as ten unique values in the increments
of 0.5 in the range of 0.5 - 5.0. The tag expressions allow
a user to associate short phrases with movies rated by them
such as “Boxing story”, “way too long” or “holocaust” etc.
Each user has rated at least 20 movies and are associated
with a user-ID. Similarly, each movie is associated with an
ID and the movie-ID’s map across the dataset unlike user-
ID’s for whom a global mapping is not present. Additionally,
each movie is attributed to at least 1 genre and at most 18
genres [6], [11]. An environment-semantics wrappers around
the dataset was curated, depending upon the paradigm we con-
sidered for each implementations . We converted the dataset
to showcase implicit interactions for Deep Neural Network
based approaches and formed a wrapper around the dataset
to conform it to environment / agent semantics required by
reinforcement learning algorithms. For these methods libraries
like PyTorch were used to create the dataset by extracting the

raw data from the CSV files and transforming it into a dataset
that is compatible with the training framework used for that
method. For example the DNN utilized the PyTorch Lightening
module to aid with training of its model from the transformed
dataset.

We note that during our exploratory analysis, most of the
values in the rating matrix are unknown as users have not rated
the majority of the movies. We compute a metric known as
sparsity of the dataset defined as :

SD = 1− non zero entries

#users ∗#movies
(3)

We find that the sparsity of the MovieLens dataset is
extremely high 93%. This shows the extent of the difficulty of
the problem of recommending movies, especially with sparse
data.

For the RL algorithm, the preprocessing steps requires that
we convert the dataset into environment semantics popularly
accepted by Deep RL frameworks. To do this, we parsed
the data to create an internal state of the environment. The
environment starts from a random user-id. Then we scan the
dataset for all the movies rated by the given user-id. These
ratings are sequentially processed and the RL agent uses this
to compute the reward function. After a scan for a particular
user, we then randomly sample a user and repeat this process.
Readers can find more details on this in section IV-C.

VI. EVALUATIONS

A. Models used for performance evaluation

For our project, we’ll use three models and compare their
performance using metrics. The first model is the matrix
factorization, which is the baseline model. Matrix factorization
is useful for determining the relationship between users and
movie matrices, as well as making predictions using both item
and user entities.

The second is the Deep Neural Networks (DNN) model.
DNN models can be used to overcome the limitations of matrix
factorization. Due to the flexibility of the network’s input layer,
DNNs may readily add query and item features, which can
assist in capturing a user’s individual interests and increase
the relevancy of suggestions.

Third, the Deep Reinforcement Learning (DRL) model.
DRL considers a recommendation system as a sequential
decision-making procedure, unlike other static recommenda-
tion methods. This system is a dynamic adaptation that oper-
ates for a long-term objective with changing user preferences.
It models the interactions between users and the recommender
system using a user-rating reinforcement learning scheme.

B. Evaluation Metrics

Every recommendation system needs an customized eval-
uation metric to assess the effectiveness of the proposed
approaches.



Fig. 4. Deep Reinforcement Learning architecture for Recommender system. We propose the environment semantics required by the RL agent followed
by utilizing an off-policy RL algorithm, or an on-policy algorithm with correction, for example, Proximal Policy Optimization. Finally, we generate top-k
Recommendations for users.

RMSE: We will use RMSE as one of our measures for
evaluating the three models in this project, and it is one
of the most often used evaluation metrics for recommender
systems. RMSE metric is the square root of the average
squared difference between the expected and actual values in
a dataset. It is the deviation from the actual recommendation
of the model. It’s calculated as follows:

RMSE =

√√√√ n∑
i=0

(P1(u, i)− P2(u, i)2/n

where
P1(u, i) is the predicted rating of user u of movie i,
P2(u, i) is the expected rating of the user u of movie i and n
are the number of samples.

Top-k recommendation accuracy: This metric assesses how
often the recommender system matches the user’s actual selec-
tion. It determines whether the predicted k-recommendations
match the user’s selection; if so, the recommendation is
considered successful. Top-K recommendation accuracy is the
ratio of successes on a validation dataset Xval and it is given
by the formula:

top−Kaccuracy = 1/(Xval)
∑

xiϵXval

1xiϵreck(xi)
(4)

where,
Xvalis the cardinality of the validation set,
1xiϵreck(xi)

is one if the k-recommendations include the true
item xi , otherwise it is zero.

Catalog Coverage: It counts the recommendations sug-
gested by the algorithm on the validation set, to see if the
recommendation has been predicted by any input in the catalog
Xcat. The catalog coverage can be calculated as:

catalogcoverage = (1/|Xcat|)|{∪xiϵXval
reck(xi)} ̸=| (5)

where
̸= is used to denote that the cardinality is taken over the set
of all unique items in the union of recommendations

C. Evaluation Results

The plots from Figure 5 through 12 show various plots
for RMSE of Matrix Factorization followed by top-1, top-
10, top-100 accuracies for the DNN method, and finally the
KL Divergence, Value function loss and Rating Prediction
accuracy of RL method. Finally, the table VI-C shows the
various metrics like MSE, RMSE, top-1, top-10 accuracy
values, catalog coverage values for all the three methods (MF,
DNN and RL). The table also reports the average reward
received by the RL agent and the Rating Prediction accuracy.

Matrix Factorization Evaluations:
- Final MSE: 1.13
(Fig. 5)

Neural Network Evaluations: -
MSE : 1.07809
-
RMSE : 1.03831
(Fig.: 6 7 8)

RL specific metrics evaluation:
Since RL Primary Task is Rating Prediction : Exact
Prediction Accuracy is 35%
(Fig.:12, 9, 10, 11)

Fig. 5. Plot of RMSE values for matrix factorization



TABLE I
TABLE: COMPARISON FOR DIFFERENT METRICS

Metric Matrix
Factoriza-

tion

DNN RL

MSE 1.13 1.07809 0.8613
RMSE 1.0630 1.03831 0.9281

Top-1
Accuracy

50% 55% -68%

Top-10
Accuracy

70% 75% 72%

Catalog
Coverage

73% 81.4% 82.6%

Avg Reward NA NA 0.20 of 1

Rating
Prediction
Accuracy

NA NA 35%

Fig. 6. Accuracy in predicting the top movie, DNN Method

VII. UI / VISUALIZATION INTERFACE DESIGNS

The User Interface to input and extract ratings and rec-
ommendations is implemented as a single page application
as in Fig. 13. The input is the id of the user which who’s
ratings are to be predicted by the recommender system. We
used Bootstrap Design front end for HTML based on Jinja
templates to work with a Flask back end. Once the user puts
in the required information, the flask backend engine uses

Fig. 7. Accuracy in finding predictions in top 10 movies, DNN Method

Fig. 8. Accuracy in finding predictions in top 100 movies, DNN Method

Fig. 9. KL Divergence plot for PPO training (Reinforcement Learning
Method)



Fig. 10. Expected reward function throughout the training of RL algorithm.

Fig. 11. Value function of the PPO training algorithm, RL Method

Fig. 12. Console message returning the accuracy - 0.341
≈ 35%, RL Method

the pre-loaded models for Matrix Factorization, DNN and
RL and queries the respective model. The response is top-
k recommendations for the user and predicted ratings (if the
algorithm predicted any rating). Then the results are displayed
in the form of a list to the user in the web interface.

VIII. DIVISION OF WORK AND TEAM MEMBERS’
CONTRIBUTIONS

The division of work between the team members of the
project are as indicated in the Table II.

IX. CONCLUSION

In this project we have looked at three implementations
of recommendation system, namely the Matrix Factorization
(FunkMF), a Deep Neural Network approach (Neural Collab-
orative Filtering) and finally a Reinforcement Learning based
approach. We find that we were able to achieve near state of
the art MSE values with the RL & the DNN approach. We also
find that the Matrix Factorization approach works very well,
and is orders faster than the training time required for the other

TABLE II
TABLE: TASKS SUMMARY AND MEMBERS

Task Members

Literature
Review

All of us discussed the literature with
specific focus on contemporary

research and evaluation methods

Design
Discus-
sions

MF - Kiran, Swetha, DNN - Ritvik,
Sumair DRL - Mudit

Data Pre-
processing

For MF / DNN : Kiran, Sumair,
Ritvik For DRL : Mudit

Algorithm
Implemen-

tation

MF : Kiran DNN : Mudit, Ritvik,
Sumair DRL : Mudit

Testing
Evaluation

Evaluation Measures : Swetha, Suresh
Visualization : Swetha, Suresh Testing

Algorithms : Suresh, Ritvik

Presentation Proposal Presentation :
Mudit, Suresh, Kiran, Ritvik, Sumair,

Swetha Demo and
User Interface: Mudit, Ritvik

Final
Report

All

two approaches. Additionally, we find that the RL approach
is also able to handle distribution shift of human preference,
however, we found this advantage during our exploratory
analysis, and a more systematic study would be required to
substantiate any claims.

Additionally, we also reported several measures like RMSE,
MSE, Top-1, Top-100 accuracy values, and Catalog coverage.
We find that all the algorithms were able to recommend
predictions which covered a large part of the possible movies
that could be recommended. We find that the insights from this
work has led us to several new questions be answered. Namely,
the RL approach is performing at par, at times slightly better
than DNN approach, however in effect the RL algorithm is
performing a regression task of predicting user ratings. It is
unclear about the advantages of choosing one over another. We
also found that the DNN and RL approaches are very sensi-
tive to hyperparameter tuning, especially the PPO algorithm.
Matrix Factorization on the other hand is extremely robust
and fast to converge. As part of future work, we propose the
following additions to our current work. First, we would like
to run our analysis on larger movie-lens datasets, that would
give better insights into the results. Second, we would want to
extend the Matrix Factorization approach and implement other



Fig. 13. User Interface for observing different model recommendations. We can enter a user ID followed by the choice of algorithm to obtain movie
recommendations. We showcase that for User 3, using the RL approach the human user would receive top 10 movie recommendations.

advanced variants such as Group-MF and SVD++ which are
very popular baselines themselves. Finally, we want to extend
the RL based approach to take into account the context of user
while predicting rewards. For example, based on the order of
the movies reviewed by the human, or the order in which they
watched the movie, such context information can be extremely
helpful in real-time movie recommendations. A challenge to
this, however, is the limited availability of such private data.
Finally, we would also like to explore various visualization
techniques to showcase our implementations such that these
systems could be used by public in real-time over the internet.
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