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Abstract

Despite the surprising power of many modern AI systems
that often learn their own representations, there is signifi-
cant discontent about their inscrutability and the attendant
problems in their ability to interact with humans. While al-
ternatives such as neuro-symbolic approaches have been pro-
posed, there is a lack of consensus on what they are about.
There are often two independent motivations (i) symbols as
a lingua franca for human-AI interaction and (ii) symbols
as (system-produced) abstractions use in its internal reason-
ing. The jury is still out on whether AI systems will need
to use symbols in their internal reasoning to achieve gen-
eral intelligence capabilities. Whatever the answer there is,
the need for (human-understandable) symbols in human-AI
interaction seems quite compelling. Symbols, like emotions,
may well not be sine qua non for intelligence per se, but they
will be crucial for AI systems to interact with us humans–
as we can neither turn off our emotions nor get by without
our symbols. In particular, in many human-designed domains,
humans would be interested in providing explicit (symbolic)
knowledge and advice–and expect machine explanations in
kind. This alone requires AI systems to at least do their I/O in
symbolic terms. In this blue sky paper, we argue this point of
view, and discuss research directions that need to be pursued
to allow for this type of human-AI interaction.

1 Introduction

AI research community is grappling with an ongoing tussle
between symbolic and non-symbolic approaches–with the
former using representations (and to some extent, knowl-
edge) designed by the users, but are often outperformed by
the latter that learn their own representations, but at the ex-
pense of inscrutability to humans in the loop. While neuro-

symbolic systems have received attention in some quarters
(Garcez et al. 2019; De Raedt et al. 2019), the jury is still
out on whether or not AI systems need internal symbolic rea-
soning to reach human-level intelligence. There are however
compelling reasons for AI systems to communicate (take
advice or provide explanations) from humans in essentially
symbolic terms. After all, the alternatives would be either
for the humans to understand the internal (learned) repre-
sentations of the AI systems–which seems like a rather poor
way for us to design our future; or for both humans and AI
systems to essentially depend on the lowest common sub-
strate they can exchange raw data–be they images, videos

or general space time signal tubes (heretofore referred to as
STST).

While STSTs–in particular saliency regions over images–
have been used in the machine learning community as a
means to either advice or interpret the operation of AI sys-
tems (Greydanus et al. 2018; Zhang et al. 2020), we con-
tend that they will not scale to human-AI interaction in more
complex sequential decision settings involving both tacit and
explicit task knowledge (Kambhampati 2021). This is be-
cause exchanging information via STSTs presents high cog-
nitive load for humans–which is what perhaps lead humans
to evolve a symbolic language in the first place.1

In this paper, we argue that orthogonal to the issue of
whether AI systems use internal symbolic representations,
AI systems need to develop local symbolic representations
that are interpretable to humans in the loop, and use them
to take advice and/or give explanations for their decisions.
The underlying motivations here are that human-AI interac-
tion should be structured for the benefit of the humans–thus
the communication should be in terms that make most sense
to humans. This argues for the inclusion of a symbolic in-
terface,2 especially in terms of symbols that already have
meaning to the humans in the loop (that is, these cannot just
be internal symbolic abstractions that the machine may have
developed for its own computational efficiency. Our argu-
ment is not that human-AI interaction must be exclusively
in symbolic means–but that it is crucial to also support a
symbolic interface. As argued in (Kambhampati 2021), AI
systems’ inability to take explicit knowledge-based advice,
or provide interpretable explanations are at the root of many
of the ills of the modern AI systems that learn their own in-
ternal representations.

Supporting such a lingua franca symbolic interface brings

1The urge to use symbolic representations for information ex-
change seems so strong that humans even develop symbolic terms
for speaking about even purely tacit tasks (e.g. pitch and roll in
basket ball).

2The oft-repeated ”System 1/System 2” architectural separa-
tion, on the other hand, doesn’t strictly necessitate or lead to sym-
bols that will serve as lingua franca.. If System 1/2 leads to sym-
bols, they’ll likely be as abstraction to improve efficiency. There
is little reason to expect that abstractions that a pure learning sys-
tem creates on its own, much like Wittgenstein’s Lion, will wind
up aligning well with the ones we humans use.
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up several significant challenges that need to be addressed
by the research community: (1) the challenge of approxi-
mating the explanations–and constraining the interpretation
of the human advice–in terms of the symbolic interface,(2)
the challenge of assembling the symbolic interface itself–
which in turn includes (2.1) getting the symbolic vocabulary
and (2.2) grounding it in the representations that the AI sys-
tem uses and (3) figuring out when and how to expand a pre-
existing symbolic vocabulary to improve the accuracy of ad-
vice/explanation communication. In the remainder of the pa-
per, we will discuss these challenges, and provide brief tech-
nical overviews of some existing research efforts–including
some from our own research group–that can be viewed as
initial realizations of such symbolic interface framework.

2 Research Challenges

Figure 1: Overall architecture of an AI system exposing a
symbolic interface to a human user, thereby allowing the AI
agent to provide explanations to its decisions as well as ac-
cept guidance/preferences from the human in the form of
advice.

Figure 1 presents an overview of an AI system capable of
leveraging a symbolic interface of the type we advocate for.
Note that in the architecture the agent’s decision-making re-
lies completely on its internal models, which may well be
expressed, and operating on representations that are not di-
rectly accessible to the human; be they neural network based
or based on some other internal symbolic abstraction. Note
that the agent could interact with the human across multi-
ple modalities (like annotated images, videos, etc, demon-
strations, etc.). We are only arguing for the inclusion of a
symbolic interface. We thus focus on symbolic interface ex-
pressed in human-understandable concepts. The AI system
uses the symbolic interface to both communicate its explana-
tions to the user and to receive instructions and advice from
them. In this section, we will discuss in more detail how this
symbolic interface could be used towards this end and also
enumerate some of the open research challenges we need to
address towards creating such systems.

2.1 Challenge: Interpreting Human Advice and

Generating Explanation

Pending the details of how the symbolic interface is setup,
let us first start by looking at how the interface is intended to
be used by the AI system. In general, we expect the symbolic
interface to allow the AI system to both capture and expose
an approximate representation of parts of the system’s model
(or at least human’s expectations of it) in terms the human
can understand. Thus the symbolic interface can become the
basis for providing explanations, wherein by exposing in-
formation about the underlying AI system in terms the user
can understand, they can update their expectations about the
AI system (thus performing model-reconciliation). By the
same token, we can allow the human to provide updates for
the AI system model in terms they understand for example,
by specifying additional constraints, previously unspecified
preferences, etc. This includes works like reward-machines
(Icarte et al. 2018) or restraining bolts (De Giacomo et al.
2019), wherein the advice-giver is effectively updating the
AI behavior by introducing these new trajectory preferences.
Additionally, in the case of providing human advice, by the
virtue of the symbolic interface being capable of capturing
human expectations, it can be used as a tool to better contex-
tualize, build on, and generalize human input. By leveraging
the intuition that while coming up with the advice the human
would have used a representation similar to the current inter-
face, the AI system can potentially identify what objectives
they may have had when providing the specific inputs.

2.2 Challenge: Collecting Initial Concept Set

The first point is to collect the propositional and relational
concepts that will form the basis of the interactions (and
potentially even action labels). These symbols are meant to
form the conceptual representation of the task and or AI sys-
tem’s capabilities from the perspective of the human. Such
symbols will be used to express any information the system
may provide to the user and to analyze any input the user
may provide. Note that in the case of user input, the input
itself need not be expressed in symbolic terms, but the con-
cepts provided allow the system to better utilize it. For exam-
ple, as in the case of (Zha, Guan, and Kambhampati 2021),
the agent may be provided a teleoperated demonstration by
the user, but access to state factors that may be important to
the user will allow the agent to better generalize the demon-
stration. These symbols may be obtained either directly or
indirectly from the human. All the explicit knowledge repre-
sentations – including knowledge graphs– will be in terms of
symbols specified by a human. In a similar vein, extracting
these symbols should also be feasible – for example the use
of scene graph analysis (Krishna et al. 2017) – provided they
are done from the human perspective. Also, note that our
symbolic interfaces require more than just any symbolic rep-
resentation. Works like (Konidaris, Kaelbling, and Lozano-
Perez 2018), (Bonet and Geffner 2019) or (Ghorbani et al.
2019) that try to learn symbols from the perspective of the
system need not result in useful symbolic interfaces, as those
learned symbols may not make sense to humans. In gen-



eral, we will assume there exists a way to map the STST
to the corresponding set of symbols. One way to accom-
plish this may be to learn specific classifiers that identify
the presence or absence of individual concepts of interest
in the given slice of STST. As mentioned earlier, we could
also use methods like scene-graph analysis, that leverage the
ability to identify common objects and their relationship to
create a high-level symbolic representation of the relevant
scene. For everyday scenarios, which do not require special-
ized vocabulary, such methods can be particularly powerful,
as this allows us to use robust systems to generate symbolic
representations without the additional overhead of collect-
ing domain specific-data. We are thus effectively amortizing
the cost of collecting the concepts over the life-time of all AI
systems that use them to generate the symbolic interface. In
the case where we are learning domain-specific vocabulary,
the concept set itself could come from multiple sources, in-
cluding the user of the system and system developers. Even
in this case, we could try to amortize the concept collection
cost by creating domain-specific concept databases, which
could be used by multiple systems (and for multiple users).
Potential concept lists could also be mined from documents
related to the domains.

2.3 Challenge: Learning Concept Grounding

Now the next question would be how to learn the mappings
between STST and symbolic concepts. The important point
to recognize is that these groundings should try to approx-
imate how the end-user would ground and understand the
given concepts. In the case of off-the-shelf concept detec-
tion methods (like those that generate scene-graphs), the
grounding is learned through large amounts of annotated
data collected usually from crowd-sourced workers. In ev-
eryday scenarios, this is completely sufficient, as in general
people tend to agree on the use of everyday concepts/words,
etc (with possibly some cultural variations). On the other
hand for more specialized domains, we may have to engage
in a separate data-collection process to identify the ground-
ing. In cases, where such mappings are captured through
learned classifiers, this may require us to collect positive and
negative examples from the concept specifier. If we are using
a learning-based method, we would want to rely on existing
few-shot learning methods to reduce the examples required
per concept. If the agent is using learning methods that can
compute its own representations of the state for coming up
with decisions. Such simplified representations could then
be used as the input to our vocabulary item classifiers.

Also note that any learned concept grounding is going to
be noisy at best. This means that even if the concept clas-
sifiers or the scene-graph generator say certain concepts are
present in a state or a slice of STST, it may not necessarily
be true. Thus it may be extremely helpful to quantify the un-
certainty over detected concepts. In the case of classifiers,
one way to quantify such uncertainty may be to approxi-
mate the probabilistic accuracy of a given classifier (either
estimated empirically over held-out data) or by using prob-
abilistic classifiers. In cases, where we are generating entire
scene graphs in addition to the uncertainty over the validity
of the graph as a whole, it may be still helpful to quantify the

certainty of specific objects and relationships in the scene
graph. As one of the strengths of symbolic representation is
modularity and composability, we hope to leverage it in the
proposed system. So even when we can generate the com-
plete scene graph we may choose to use or even expose only
parts of the graph. Once estimated, such probabilistic beliefs
could be explicitly taken into account by the algorithms that
will be using these concepts. For example, if the concepts are
going to be used to learn a symbolic model approximation,
one could use a Bayesian approach and maintain multiple
hypotheses over the possible models (with varying degrees
of certainty). Additionally, if the system chooses to only ex-
pose the most likely model to the user, it can additionally
also surface the certainty it has over that model.

2.4 Challenge: Allowing For Vocabulary

Expansion

Another challenge that long term AI systems would have
to deal with is the fact that the original concept list would,
in most cases, be incomplete. So the algorithms that work
with these concept lists will need to explicitly allow for the
fact that they may only have a subset of the total vocabu-
lary list that the human may have access to. This means that
when it tries to reason about or interpret human input, or
build a symbolic approximation of its own model, there may
be concepts that are required for correctly performing such
operations. In general, the problem of detecting incomplete
vocabulary is easier for cases where the system is trying to
build symbolic approximations (since it can approximate the
accuracy of the learned representation), than in cases where
it is using these concepts purely as a way to analyze the hu-
man input. As in the latter case, it is easy for the system to
display confirmation bias and incorrectly adopt a hypothesis
that is expressed solely in terms of the previously specified
concepts. One way to avoid such biases may be to ensure
that the system always maintains some uncertainty in any
hypotheses it learns from the human input (Hadfield-Menell
et al. 2017). Once vocabulary incompleteness is identified
the next challenge is to work with the human to identify the
missing vocabulary items. In this case, rather than trying to
just acquire more concepts and symbols, the system could
be more directed. Particularly in the case of explanations,
the AI agent could rely on its underlying system model to
identify what system states and model components may be
relevant to the current explanatory queries. For example, in
cases where the AI agent can generate visual representations
of the underlying state, it can use low-level explanations like
saliency maps to highlight parts of the state relevant to the
current decisions. In the case of super-human AIs, there may
be an additional challenge that the human vocabulary isn’t
sufficient to create a helpful explanation. In such cases, we
may need to make use of strategies from intelligent tutoring
systems (ITS) (Anderson, Boyle, and Reiser 1985) to enable
the AI systems to teach concepts to humans.



3 Case Studies

3.1 Providing Explanation to Humans

In terms of works that have looked at the use of a sym-
bolic interface for explanation generation, an instructive ex-
ample would be (Sreedharan et al. 2020). The work builds
on previous works like TCAV (Kim et al. 2018) that tries
to identify the influence of propositional concepts on classi-
fier decisions (thus building an abstract symbolic model that
relates various concepts to system decisions). In (Sreedha-
ran et al. 2020), given an explanatory query, usually, a con-
trastive one that asks why the current plan was selected over
another that the user expected, the system tries to generate
an explanation in terms the user understands. The decision-
making system makes its decisions based on a model that
is opaque to an end-user (say a learned model or a simula-
tor). For a given explanatory query, the work tries to con-
struct parts of a symbolic model (learned from samples gen-
erated from the opaque model), particularly missing pre-
conditions and abstract cost function, expressed in human-
understandable concepts. This model is then used to provide
specific explanations. In regards to concept sets, the system
assumes access to a set of user-specified propositional con-
cepts, along with their corresponding classifiers. These clas-
sifiers are grounded based on positive and negative examples
for each concept. The work captures the uncertainty regard-
ing the grounding by using the classification accuracy of the
system. Additionally, the system associates a level of uncer-
tainty to each learned symbolic model-component, that not
only captures any uncertainty related to grounding but also
the fact that the system may have used too few samples to
identify the correct model component. Finally, the system
can detect that the original vocabulary set may be incom-
plete if the algorithm is unable to find an explanation for the
user query.

3.2 Interpreting Human Advice

An illustration of the use of symbolic interfaces to more ef-
fectively interpret human advice is provided by EXPAND
system (Guan et al. 2020), which tries to utilize human bi-
nary evaluative feedback and visual explanation to acceler-
ate Human-in-the-Loop Deep Reinforcement Learning. The
visual advice is given as saliency regions associated with
the action taken. Such feedback could be expensive to col-
lect, as well as unintuitive to specify, especially when the hu-
man has to provide such annotations for each query. To make
the feedback collection process more efficient and effortless
for the human expert, EXPAND leverages an object-oriented
interface to convert the labels of relevant objects into cor-
responding saliency regions in image observations via off-
the-shelf object detectors (which effectively ”ground” hu-
man object symbols into the image STST). The human feed-
back is thus interpreted with the assumption that it refers to
objects that are relevant from human’s point of view. This
despite the fact that the Deep RL part of EXPAND is oper-
ating over pixel space, and constructing its own internal rep-
resentations. Object-oriented symbolic interfaces like these
have also been used in other previous works to allow humans
to provide informative and generalizable object-focused ad-

vices in an effortless way (Thomaz, Breazeal et al. 2006;
Krening et al. 2016; Guan et al. 2020).

Another related recent project (Zha, Guan, and Kamb-
hampati 2021) takes the same approach of using symbolic
interface to better interpret the human advice. Here the
aim is to reduce the ambiguity in human demonstrations
of robotic tasks to improve the efficiency of reinforcement
learning from demonstrations (RLfD). The system assumes
that the (continuous) demonstration provided by the human
is guided by their own interest in highlighting specific sym-
bolic goals and way points. It learns to interpret the rel-
ative importance of these symbols and use that to disam-
biguate the demonstration (a process that can be viewed as
the AI system trying to “explain” the demonstration to it-
self in terms of symbols that are viewed to be critical for the
human demonstrator).

4 Concluding Remarks

In this paper, we argued for an ambitious research program
focused on ensuring a symbolic interface to AI systems–
independent of whether their internal operations themselves
are done in human-interpretable symbolic means. In the end,
the need to establish a human interpretable symbolic inter-
face is but a natural consequence of the fact that even in
the simplest case, human agent-interaction consists at the
very least of three models (Kambhampati 2020). The human
model MH with which captures human capabilities, prefer-
ences, and objectives; the agent model MR which drives the
agent decision-making, and the pivotal bridge model MR

h

that captures human expectations of the agent. It is using
MR

h
that the human decides what instructions and advice to

give to the agent so they generate the desired outcomes, and
it is by updating MR

h
that the robot could try to help the hu-

man make better sense of its behavior. It should be clear to
the reader that in the most general case, our proposed sym-
bolic interface acts as a way to facilitate the communication
and manipulation of MR

h
in terms the human would have

conceived it. When we use this symbolic interfaces to in-
terpret the human to advise, we are but using the intuition
that they were relying on MR

h
to come up with them in the

first place. When we allow the user to manipulate the sym-
bolic representation as part of advice, we are but allowing
for the fact that the human expects the agent’s model to be
updated in response to their input. Finally, when we surface
symbolic representations of the agent’s true model, we are
but performing model reconciliation with the added insight
that the human mental model need not be represented in the
same terms as the robot model. If we are to avoid the use
of such a symbolic interfaces, we are doing so at the cost of
our system’s ability to be truly human-aware. Without such
a interface expressed in terms human understands, we are ef-
fectively forcing the human to enter the world of the agent.
Here it becomes the human’s responsibility to make sure that
their advice can be made sense in terms the agents can make
sense of, and to take raw space time signal tubes emitted
by the agent or corresponding to agent behavior and try to
patch their existing expectations about the agent expressed
in symbolic terms.
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