Randomly Wired Networks are on the rise, have we been
creating wrong Networks all along?

Mudit Verma
muditverma@asu.edu
Arizona State University
Tempe, AZ

ABSTRACT

Designing a neural network for classification tasks is experiencing
a shift from manual choices to automated network generation. Sur-
prisingly, recent works used random graph generation techniques
to obtain random neural network architectures that could compete
with state of the art methods for an image classification task. This
motivates the use of MCMC Sampling methods, which have been
extensively used for random walks on graphs & graph generation.
This project aims to view and present ideas on Neural Architecture
Search from the lens of MCMC Sampling. We run a Markov chain to
sample random neural architectures and contrast them with other
random graph generation methods. We support claims of why algo-
rithms that have been used to generate state-of-the-art, yet, random
neural networks are actually biased and how true random sampling
is not the way to go. Our observations on the accuracy versus vari-
ous graph metrics reveal that certain properties of the graph are
desired and should not be chosen randomly, tempering the unrest
in the NAS community about whether the existing contributions
to intelligent searches went to vain.

KEYWORDS
Neural Architecture Search, MCMC Sampling, Random Graphs

1 NAS BACKGROUND

Deep Learning methods have been shown to be successful in numer-
ous and diverse tasks like computer vision, language identification,
text generation. [8, 11, 23] and many more [1]. This has caused
a paradigm shift from feature engineering towards architecture
design. Although designing architectures allows flexibility and is
less demanding, with the increase in complexity of tasks, neural
network design itself has become a field of research.

Neural Architecture Search as a research area started as early
as in the 1980s with researchers using genetic algorithms [16] and
formulating different ideas to approach the problem [10]. Since
then, the field has experienced many contributions. Some of the
more recent works [2, 6] started with confining the problem to
some tractable search space of neural architectures in the image
recognition domains or searching for specific parts of the neural
network like activation functions [20]. They use Reinforcement
Learning and Recurrent Neural Network controllers to obtain the
neural architecture. Further, in the timeline, more global approaches
were seen, which would repeat a fixed module, called cell, in dif-
ferent ways to obtain a final neural network [32, 33]. However,
these approaches were quite slow in execution and required many
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different architectures to be trained before achieving a respectable
accuracy score. To curb this flaw weight sharing paradigms were
used like [19] - Efficient NAS or ENAS. Although better, these meth-
ods were still slower in comparison to the training of hand-crafted
networks. As noted by [24], the success of ENAS, a very popular
NAS technique, was a result of the search space design rather than
the controller training and concluded that one-shot architecture
design is an efficient alternative to architecture search by ENAS. [4]
talks extensively about neural architecture design along dimensions
of search space, search strategy, and performance estimation.

In the realm of One-shot architecture search, some works [3,
27]involved the use of faster search algorithms like Hill-Climbing
with better child generation function which could result in obtain-
ing a trained final architecture is similar in duration as those of
hand-crafted networks. [29] lists out various one-shot techniques
used for neural architecture search where in some works would
pre-generate a neural architecture graph and then train it as the
final architecture.

However, recently published [30] shatters most of the above
works and numerous other articles which showcase a neural ar-
chitecture as it’s contribution to classification tasks. They use ran-
dom graph generation algorithms to sample a graph and called the
placement of edges in the graph as “Wiring”. After converting the
obtained graph to a Directed Acyclic Graph, they use their mapping
function to map graph nodes to layers and edges to aggregation
operation (like add outputs of multiple layers to feed to the next
layer). The mapping function is fixed beforehand and does not
change with the produced graph. Surprisingly, they could compete
closely with the state-of-the-art accuracy values for ImageNet [21]
challenge dataset, with few randomly generated neural networks.
xie2019exploring makes it look as if all the intelligence put into
curate hand-crafted architectures is no better than generating ran-
dom architectures; however, we will discuss how hidden priors like
graph density and longest path length affect accuracy.

This motivates this project and a discussion on whether the
“randomly generated graphs” were truly random and question what
kinds of graphs were able to get respectable accuracy scores. We will
explore a bit more about connections of NAS to network science
and Brain wiring to get a more concrete idea of why Wiring is
essential for the image classification task.

2 PROPOSED WORK

(1) (Section 3) Reading: We study how NAS connects to Net-
work Science which affects the architecture design choices.
Further, we draw certain points from cognitive science as a
motivation to decouple learning an architecture and learning
network weights. The reading also explores the involvement



of MCMC with NAS and Deep Learning and concludes that
[30] is most likely the only attempt at using a random graph
generation strategy to obtain and train a neural network.

(2) (Section 6) Theme: This project critiques the idea that truly
random graphs are the way to go in the field of Neural Ar-
chitecture Search.

(3) (Section 4) Implementation: We will then propose a simple
Markov chain (MC) to sample random undirected graphs.
The sampled graphs will be converted to neural networks
via a trivial mapping function, mapping graph nodes to lay-
ers and graph edges to aggregation operations. We obtain
several other graphs via three other random graph genera-
tion models - Erdos-Renyi (ER), Barabasi-Albert (BA), and
Watts-Strogatz (WS), and contrast them against the MC-
graphs along with various graph metrics. The results of the
experiments are compiled to reveal some interesting insights
about the nature of graphs that perform well on an image
classification task.

(4) (Section 7) Future Work: We will end the discussion with
some interesting ideas involving the use of MCMC tech-
niques in the are of NAS.

3 ESTABLISHING CONNECTIONS

The aim of this section is to study the motivations for Wiring in
neural architectures from a cognitive science perspective.

3.1 NAS Connections to Brain Wiring Network
Science

[31] beautifully compares artificial neural networks to humans and
nature. It explains the idea of innate abilities in human babies to be
able to recognize and manipulate items really quickly, which sug-
gests that they are born with highly structured brain connectivity.
This connectivity provides a scaffolding upon which rapid learning
can occur. By this analogy, either the neural network, be initialized
with “good" wired architectures, or these must be learned evolu-
tionarily (transfer learning). Given the diversity, weight sharing
among entirely different classification tasks have not proven to
be successful, leading us to believe that neural architectures are
supposed to be constructed with certain priors and exhibit certain
properties. One can argue that weight initialization may also play
a role, which it does to some extent, but [27] shows that their NAS
architecture performance remained about the same even with differ-
ent weight initialization methods. Another important point posited
by [31] is that the brain wiring (innate) abilities are not completely
learned during the lifetime of the animal; they are hardwired to
most extents. This encourages us to assume that learning of net-
work architecture should be partially decoupled from the learning
that happens during the training of the neural network. This de-
coupling shows that even from the perspective of neuroscience,
the network topology and Wiring is as important as it’s training
schedule, if not more.

[25] takes results of [30] to say that “achievable input-output
functions largely over-laps for different architectures”. This further
suggests that works involving “intelligent” contributions by coming
up with a new wired network topology would not be much different
from approximation by other randomly wired networks. Although
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we acknowledge and appreciate the random wiring strategy to
be useful, our results show that “good" networks are skewed by
some properties of graphs even with repeated attempts to generate
random graphs. Hence, coming up with “any” architecture will not
be sufficient for obtaining a good accuracy score.

[28] explains small world networks. In network science, small
world graphs are such that one can reach one any one node to
any other node in at most 6 hops. Such graphs have been found in
neural wiring of worms [26] motivating us to fix certain hopsize in
which we can move from any one node to any other node. Hence
we have the concept of components as we will discuss later.

3.2 MCMC & Deep Learning & Random Search
for NAS

Markov Chains and Monte-Carlo methods have been used for var-
ious sampling tasks in Deep Learning like [9, 17]. These works
have mostly been in the context of using MCMC to aid the creation
of generative models. Some of the other works involve the use of
MCMC to create DAGs of bayesian relationships from observed
data [13, 14]

Parallelly, Markov chains have been used to perform random
walks on graphs, sample random distributions, and even sample
random graphs [5]. However, none of the works to the best of
our knowledge relates to using a Markov Chain for sampling neu-
ral architectures. In fact, [30] is as close as research works get to
employing a Markov chain for sampling neural architectures.

Random Search has been tried with Neural Architecture Search
several times; however, the randomness was in either selecting
operations for evolving architecture [27] or were involved the image
data/ model accuracy/weights of other architectures in determining
the final architecture [15, 22].

4 SETUP

In this section, we discuss the setup for the implementation part
of this project. We will familiarize ourselves with three popular
random graph generation algorithms and propose a Markov Chain
model to generate random graphs. This will be followed by explain-
ing fixed rules or constraints to generate a directed acyclic called
NAS Graph. Finally, we will look at how this DAG is mapped to
become a neural network.

4.1 Random Graph Generation Algorithms

We use a total of four algorithms to sample random graphs, which
are, proposed Markov Chain (MC), Erdos-Renyi (ER), Barabasi-
Albert (BA), and Watts-Strogatz (WS). The latter three have been
used by [30] to generate random graphs.

4.1.1 Markov Chain. Algorithm 1 gives the proposed Markov
Chain. The operations from any state can be described as, stay,
swap 2 edges, add/remove edge and add/remove a node.

It can be seen that the presented chain is both aperiodic and
irreducible. That is, we have a self-loop on all nodes hence aperiodic,
and also, we can move in the state space by adding or removing
nodes and adding or removing edges with positive probability.
Hence there must exist a stationary distribution for the presented
chain. We also put a limit to the maximum and a minimum number
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of nodes in the graph to be 5 to 100. If an operation is selected
which violates this, the previous graph is returned.

Although a thorough investigation in mixing times and station-
ary distribution values is to be conducted, we can intuit that the sta-
tionary distribution will not be uniformly random. Among addNode
and removeNode operations, the probability to transition to a new
state will not be equal to transition back to the initial state with
operation newNode. Thus, we can think of the Probability distribu-
tion not being symmetric. Nevertheless, the graphs may be biased,
but do not use any knowledge of the classification task.

Algorithm 1 Markov Chain

1: procedure MARKOVCHAIN(Gy, k)  » Inital Graph and Chain
Length

2 while ¢ # k do

3 G « Gy with prob 0.1 > STAY

4 G « edge Swap with prob 0.4 > SWAP

5 if edge swap fails then

6: G« G()

7: end if

8 G < add/remove edge with prob 0.2 > EDGE

9: pick 2 nodes randomly, and/remove edge with equal
prob

10: G « add/remove node with prob 0.3 > NODE

11:

4.1.2 Other Random Models. [30] explains the ER, BA, and
WS models. For our discussion, we need to know that ER Model
produces a graph with N Nodes and an edge between two nodes is
connected with probability P, independent of all other nodes and
edges. The BA Model generates a random graph by sequentially
adding new nodes. The initial state is M nodes without any edges
(1 £ M < N). The method sequentially adds a new node with M
new edges. Any graph generated by BA(M) has exactly M % (N — M)
edges. Finally, in the WS Model, the N nodes are regularly placed
in a ring, and each node is connected to its K/2 neighbors on both
sides (K is an even number). Then, in a clockwise loop, for every
node v, the edge that connects v to its clockwise ith next node
is rewired with probability P. “Rewiring" is defined as uniformly
choosing a random node that is not v and that is not a duplicate
edge. This loop is repeated K /2 times for 1 < i < K/2.

ER, BA, and WS models are available in the networkx library

(7]

4.2 Obtaining the Graph

The complete graph is split into components Ci, Ca, C3...Cy; such
that each component is an Undirected Sub Graph. Each component
has one root node and one sink node such that if this graph were to
be converted to a DAG, the first and last element of topologically
sorted order would be the root and sink of this graph. These compo-
nents are attached, such that the root of C; is the sink of C;_1. The
root of Cy is the input node, and the sink of C,, is the output node.
Figure 1 shows one such architecture with 3 components {a,b,ou}

4.2.1 Undirected Sub Graph. We use one of the algorithms men-
tioned in Section 4.1. This gives us a component of the final graph.

Figure 1: Best performing architecture our of all sampled
graphs for all methods. This is a 3 component graph gener-
ated by MC model

Two new nodes are added to the component such that for they
become the root and sink nodes. All the current nodes in the com-
ponent which has no predecessor are connected to the root node
(edge from root to node). All the nodes which have no successor
are connected to the sink node (edge from nodes to sink).

4.2.2 Obtaining a DAG for Undirected Subgraph. A simple
yet efficient way of converting an undirected graph to a directed
acyclic graph is to impose a strict total order on the edge directions.
When enumerating all the edges of the obtained undirected graph,
we can set our total order condition to be the lexographic prece-
dence of node names. Nodes are named by numbers, followed by
their component labels.

4.3 Mapping Nodes to Layers & Operations

Once we have a DAG, it is quite trivial to convert to a neural
network. We can assume all the nodes to be layers and edges to be
aggregators. A layer is a combination of a relu, conv (convolution)
layer, batchNorm sublayers. The number of channels in convolution
layer is dependent upon the input image dimension and is manually
set so that there are no discrepancies in the network dimensions.

All the internal nodes in a component (other than root and
sink) have the same inChannels and outChannels. inChannels and
outChannels are changes at the root/sink nodes of any/all of the
components. The internal nodes have padding.

For example, in Figure 1, node ’In’ is the input node, and root of
component 'a’. ’A’ is the sink of component ’a’. {1a,2a,3a,4a,4a,} are
internal nodes of component ’a’. All internal nodes have the same in-
Channels and outChannels for the conv sublayer. The outChannels
of root node, say, B’ matches all its immediate children inChan-
nels, and the inchannel of the root node, again, 'B’ must match the
outchannels of its predecessors. There may be a MaxPool layer at
the sink nodes, except the sink of the last component. Finally, there
is a Flatten layer attached to ’Ou’ which linearizes the ’Ou’ layer
and connects to a fullyConnected layer with outputs = number of
classes in the classification task.



5 EXPERIMENTS

This section explains the different experiments conducted on NAS
Graphs. We set certain parameters to gain insights about the effect
of those parameters on the final testing accuracy of the trained
neural network.

The code for this is available on github ! which describes the ex-
act configurations used. We have the following parameters : epochs,
batchsize, testbatchsize, learningrate, gamma, seed which are com-
mon regardless of the graph generation algorithm. The optimzer
for all neural networks is AdaDelta and Loss function is negative
log likelihood implementations of PyTorch 1.3.1 [18].

The number of components is a common parameter [30] and is
set to 3 for all the models. 3 has been set because the input image
is 28x28 of MNIST in our experiments versus high dimensional
Imagenet images used in .

Each algorithm has its own sets of parameters. MC has chain run
length, ER has edge probability and number of Nodes, BA has the
number of edges and max number of Nodes, WS has the number of
nodes, and the neighbor size, probability of rewiring.

To obtain a spectrum of different type of graphs we change the
number of nodes parameter for ER, BA and WS from 5, 10, 20 and
generate graphs with different p/m/k (p from 0.2 to 0.8, m from 2
to 8, k from 4 to 7) values to obtain 12 graphs for each for these
algorithms and over 20 graphs from MC model. Hence we train
and test and showcase our results on MNIST dataset having 60,000
images with over 56 sampled graphs.

6 RESULTS

In this section, we will analyze the results of experiments conducted
from the perspective of critiquing the idea posited by [30] that
random graph generation is the panacea for neural architecture
search problems.

Test_Accuracy

Figure 2: Test Accuracy for MC Models

Figures 4,5,6 are enough to showcase our observations for graph
metrics. Figures 2 and 3 present the test accuracies for MC and
ER/BA/WS generated models respectively. Interested readers may
refer to attached appendix which shows plots with other node
degree metrics like mean, median, variance and total count of nodes.
Each spot in the plots 4,5,6 is a random graph trained for 30 epochs
and other specified hyper parameters. Color of the spot determines
the algorithm used to obtain that graph. For plots 2 and 3, all the

Uhttps://github.com/famishedrover/MCMC-NAS
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Test_Accuracy

Figure 5: Degree Centrality

Figure 6: Diameter

lines are training curves versus epochs for each of the graphs. Colors
indicate distinct graph models.

6.1 Other Works

Although the primary aim of this work is not to obtain state-of-the-
art accuracy, however for completeness, we will mention the result
of other works as well. Results on MNIST by one of the one-shot
NAS works [27] is 0.28% error on test-set. Additionally, [12] is a
non-NAS method which achieves 0.18% error.


https://github.com/famishedrover/MCMC-NAS
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6.2 Observations

The following observations can be drawn from the plots :

(1) Maximum accuracy achieved by any graph is 97.6%, the
architecture for which is given in Figure 1.

(2) Figure 4 shows that the density of the generated model is
spread throughout; however, if one were to imagine a curve
joining all the highest points for all densities, the accuracies
decline from just over 97% to 96%. Moreover, the max accu-
racy graph is at the center of this plot. MC models are found
to be better than other generated graphs (even though pa-
rameters like the probability of an edge between two nodes
was varied from 0.2 to 0.8).

(3) Figure 5 shows an even spread of graphs by this metric, yet
as the degree measure increases, the accuracy falls.

(4) Figure 6 shows that high performing graphs are skewed
towards shorter diameter graphs. Diameters for DAGs is the
longest path length (from root to leaf). Therefore we can
find longer neural networks usually generated by ER/WS
models to perform worse. Between BA and MC models, BA is
more evenly spread, while MC clusters around small length
graphs.

(5) Other plots from the attached Appendix, like node degree
variance, shows that MC models are randomly sampled as
graphs of all variance can be seen.

(6) Figure 7 in the attached Appendix shows that graphs gener-
ated by other methods (ER/WS/BA) with similar max degree
nodes to the best performing network (by MC) perform
worse. While MC models have varying max node degree
values, perform comparatively to the max performing graph.

(7) Test Accuracy curves of these graphs in Figures 2 and 3
shows that MC models lie in the accuracy range of 96.5%
to 97.5% whereas other methods have a much larger range
from 95% to 97%.

6.3 Comments

Why Random Wiring is not the solution ? These experiments clearly
indicate that the neural networks which do perform really well are
likely to be shorter, have high degree centrality (middle is high in the
plot), and are neither too dense or too sparse. These properties can
be observed for all better performing neural networks regardless of
their generation algorithm, indicating the “goodness” of networks.
claims of random neural networks being the next steps in the field
of Neural Architecture Search breaks down. Since true random
graph sampler would generate graphs which on expectation lie
at the center of all of these plots, and it is conspicuous that “well-
performing graphs" do not cluster around the center. [27] is a one-
shot NAS technique that uses hill-climbing search over NAS space
using morphism operators to evolve their network. Hence their
networks are dependent upon accuracy they achieve, unlike in
random wiring methods. Moreover, they achieve an error of 0.28%
on MNIST, which is much better than ours. This is a typical case
of partial decoupling between network architecture and network
learning, as in Section 3.1.

Are these results any good? The results of this paper and [30]
indicates that logical explanations given in many of the works
which claimed to have come up with a better architecture just by

rewiring the network edges are incorrect. Moreover, we claim that
the “goodness" of architecture depends upon the graph properties
and the input size. We say this, since agrees that one-shot methods
tend to over-parameterized their networks, and given the diversity
in examples of individual classes, it becomes difficult for the neural
network to overfit/memoize the data. In doing so, they tend to
generate humongous neural networks with billions of parameters;
however, we see that in our experiments, it is the more compact
networks that performed better.

7 FUTURE WORK

One of the interesting works by [5] attempts to generate a connected
random graph conditioned on an ensemble of connected random
graphs using a Metropolis-Hastings framework. A work involving
collecting and generating different “good" performing architectures
can be collected, and then leveraging the above work, random
graphs may be sampled off of the created sample. It would be similar
to bootstrapping weights or “transfer” learning of architectures via
MCMC.

In the current setup, we can create another layer of Markov
Chain, deciding the type of the layer at each node. A major hurdle
would be to sample such that the chosen parameters of the selected
layers for the node are dimensionally compatible.

8 CONCLUSION

In this paper, we present evidence from the cognitive science and
NAS community to gauge the importance of Wiring (& random
Wiring) in neural architectures. We critique some of the ideas pre-
sented by [30] since they show one of the first works in experi-
menting with randomly sampled neural architectures for image
classification tasks. We perform our experiments on the MNIST
dataset with a proposed Markov Chain and other graph generation
algorithms like Erdos-Reyni, Barabasi-Albert, and Watts-Strogatz
and realize that their priors have an impact on test accuracy. Fur-
ther, we find that in all of the generated random graphs, the “well"
performing graphs had a pattern associated with them conditioned
on specific graph metrics.

We conclude that not all randomly generated graphs are equal for
a specific problem statement. The fact that the results in this paper
and [30] are competitive with other better models shows that much
the architecture design does not depend upon the image pixels in
the classification task, but actually on the image dimensions. To
be precise, the architecture design should depend upon the least
number of dimensions covering most of the explained variances.
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